Maurilio J Soares

CEP America, Емеривил, California, United States

Are you Maurilio J Soares?

Claim your profile

Publications (88)180.43 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Electrospray is generally regarded as a “soft” technique due to an absence of any observable molecular fragmentation or destruction. This study reports on a novel and easy way to induce surface activation on the surface of polystyrene microbeads through electrospray deposition into a grounded aqueous electrolyte solution bath. This process, nicknamed EISA, which stands for Electrospray Induced Surface Activation, proposes that when a highly-charged microbead formed by the electrospray process sinks into the aqueous electrolyte solution, it behaves like a highly charged spherical capacitor that discharges in the conductive liquid. The energy released leads to a breakup of the polystyrene surface bonds and water oxidation with oxygen. Further reactions produce a carboxylated surface that was confirmed by X-ray photoelectron spectroscopy (XPS) and protein coupling. An immunoassay based on these modified microbeads was also developed and presented for use in Syphilis detection, demonstrating a reliable signal-to-noise ratio between positive and negative results.
    02/2015; DOI:10.1039/C4TB01884B
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Trypanosoma cruzi, the etiologic agent of Chagas disease, alternates between distinct morphological and functional forms during its life cycle. Axenic multiplication and differentiation processes of this protozoan parasite can be reproduced in vitro, enabling the isolation and study of the different evolutionary forms. Although there are several publications attempting the cultivation of T. cruzi under chemically defined conditions, in our experience none of the published media are capable of maintaining T. cruzi in continuous growth.ResultsIn this work we modified a known chemically defined medium for Trypanosoma brucei growth. The resulting LM14 and LM14B defined media enabled cultivation of five different strains of T. cruzi for more than forty passages until now. The parasite¿s biological characteristics such as morphology and differentiation to metacyclic trypomastigotes were maintained when defined media is used.Conclusions The establishment of a defined medium for T. cruzi cultivation is an important tool for basic biological research allowing several different approaches, providing new perspectives for further studies related to cell biology of this parasite.
    BMC Microbiology 09/2014; 14(1):238. DOI:10.1186/s12866-014-0238-y · 2.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Essential oils (EOs) are complex mixtures of secondary metabolites from various plants. It has been shown that several EOs, or their constituents, have inhibitory activity against trypanosomatid protozoa. Thus, we analyzed the biological activity of different EOs on Trypanosoma cruzi, as well as their cytotoxicity on Vero cells.
    BMC Complementary and Alternative Medicine 08/2014; 14(1):309. DOI:10.1186/1472-6882-14-309 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clathrin-mediated vesicular trafficking, the mechanism by which proteins and lipids are transported between membrane-bound organelles, accounts for a large proportion of import from the plasma membrane (endocytosis) and transport from the trans-Golgi network towards the endosomal system. Clathrin-mediated events are still poorly understood in the protozoan Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. In this study, clathrin heavy (TcCHC) and light (TcCLC) chain gene expression and protein localization were investigated in different developmental forms of T. cruzi (epimastigotes, trypomastigotes and amastigotes), using both polyclonal and monoclonal antibodies raised against T. cruzi recombinant proteins.
    BMC Cell Biology 06/2014; 15(1):23. DOI:10.1186/1471-2121-15-23 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reservosomes are large round vesicles located at the posterior end of epimastigote forms of the protozoan Trypanosoma cruzi, the etiological agent of Chagas disease. They are the specific end organelles of the endocytosis pathway of T. cruzi, and they play key roles in nutrient uptake and cell differentiation. These lysosome-like organelles accumulate ingested macromolecules and contain large amounts of a major cysteine proteinase (cruzipain or GP57/51 protein). Aim of this study was to produce a monoclonal antibody (mAb) against a recombinant T. cruzi cruzipain (TcCruzipain) that specifically labels the reservosomes. BALB/c mice were immunized with purified recombinant TcCruzipain to obtain the mAb. After fusion of isolated splenocytes with myeloma cells and screening, a mAb was obtained by limiting dilution and characterized by capture ELISA. We report here the production of a kappa-positive monoclonal IgG antibody (mAb CZP-315.D9) that recognizes recombinant TcCruzipain. This mAb binds preferentially to a protein with a molecular weight of about 50 kDa on western blots and specifically labels reservosomes by immunofluorescence and transmission electron microscopy. The monoclonal CZP-315.D9 constitutes a potentially powerful marker for use in studies on the function of reservosomes of T. cruzi.
    01/2014; 2014:714749. DOI:10.1155/2014/714749
  • American Journal of Plant Sciences 01/2014; 05(03):299-305. DOI:10.4236/ajps.2014.53041
  • Source
    Camila M. O. Azeredo, Maurilio J. Soares
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyzed the effect of the combination of citral, eugenol and thymol, respectively the main constituents of essential oils of Cympobogon citratus (DC) Stapf, Poaceae (lemon grass), Syzygium aromaticum (L.) Merr. & L.M. Perry, Myrtaceae (clove) and Thymus vulgaris L., Lamiaceae (thyme), on the proliferation of the trypanosomatids Crithidia fasciculata and Trypanosoma cruzi. The constituents were initially added individually at different concentrations to C. fasciculata cultures to estimate the IC50/24h. Concentrations in a triple combination were about 2 times and 16.5 times lower against C. fasciculata and T. cruzi, respectively, as compared to isolated compounds. Incubation of C. fasciculata with the trypanocydal agent benznidazole did not affect parasite growth at concentrations up to 500 µg/ml, but the IC50 of this drug against T. cruzi was 15.8 µg/ml, a value about 2-5 times higher than that of constituents in the triple combination. Analysis of treated C. fasciculata by scanning electron microscopy showed rounding of the cell body. Our data show that combination of essential oil constituents resulted in increased inhibitory activity on growth of both non-pathogenic and pathogenic trypanosomatid species and indicate that the non-patogenic C. fasciculata may represent a resistant model for drug screening in trypanosomatids.
    Revista Brasileira de Farmacognosia 10/2013; 23(5):762-768. DOI:10.1590/S0102-695X2013000500007 · 0.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The male reproductive system of insects can have several tissues responsible for the secretion of seminal fluid proteins (SFPs), such as testes, accessory glands, seminal vesicles, ejaculatory duct and ejaculatory bulb. The SFPs are transferred during mating and can induce several physiological and behavioral changes in females, such as increase in oviposition and decrease in sexual receptivity after copulation. The phlebotomine Lutzomyia longipalpis is the main vector of visceral leishmaniasis. Despite its medical importance, little is known about its reproductive biology. Here we present morphological aspects of the male L. longipalpis reproductive system by light, scanning and transmission electron microscopy, and compare the mating frequency of both virgin and previously mated females. The male L. longipalpis reproductive system is comprised by a pair of oval-shaped testes linked to a seminal vesicle by vasa deferentia. It follows an ejaculatory duct with an ejaculatory pump (a large bulb enveloped by muscles and associated to tracheas). The terminal endings of the vasa deferentia are inserted into the seminal vesicle by invaginations of the seminal vesicle wall, which is composed by a single layer of gland cells, with well-developed endoplasmic reticulum profiles and secretion granules. Our data suggest that the seminal vesicle acts both as a spermatozoa reservoir and as an accessory gland. Mating experiments support this hypothesis, revealing a decrease in mating frequency after copulation that indicates the effect of putative SFPs. Ultrastructural features of the L. longipalpis male seminal vesicle indicated its possible role as an accessory gland. Behavioral observations revealed a reduction in mating frequency of copulated females. Together with transcriptome analyses from male sandfly reproductive organs identifying ESTs encoding orthologs of SFPs, these data indicate the presence of putative L. longipalpis SFPs reducing sexual mating frequency of copulated females.
    PLoS ONE 09/2013; 8(9):e74898. DOI:10.1371/journal.pone.0074898 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heteroxenic and monoxenic trypanosomatids were screened for the presence of actin using a mouse polyclonal antibody produced against the entire sequence of the Trypanosoma cruzi actin gene, encoding a 41.9 kDa protein. Western blot analysis showed that this antibody reacted with a polypeptide of approximately 42 kDa in the whole-cell lysates of parasites targeting mammals (T. cruzi, Trypanosoma brucei and Leishmania major), insects (Angomonas deanei, Crithidia fasciculata, Herpetomonas samuelpessoai and Strigomonas culicis) and plants (Phytomonas serpens). A single polypeptide of approximately 42 kDa was detected in the whole-cell lysates of T. cruzi cultured epimastigotes, metacyclic trypomastigotes and amastigotes at similar protein expression levels. Confocal microscopy showed that actin was expressed throughout the cytoplasm of all the tested trypanosomatids. These data demonstrate that actin expression is widespread in trypanosomatids.
    Memórias do Instituto Oswaldo Cruz 08/2013; 108(5):631-6. DOI:10.1590/0074-0276108052013015 · 1.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein palmitoylation is a post-translational modification that contributes to determining protein localization and function. Palmitoylation has been described in trypanosomatid protozoa, but no zDHHC palmitoyl transferase has been identified in Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. In this study we identify and show the subcellular localization of TcHIP (Tc00.1047053508199.50), a putative T. cruzi zDHHC palmitoyl transferase. Analysis of the deduced protein sequence indicates that it contains ankyrin repeats (Ank and Ank2) and the zDHHC conserved domain, typical of zDHHC palmitoyl transferases. A TcHIP polyclonal antiserum obtained from mice immunized with the purified recombinant protein was used to study the presence and subcellular localization of the native enzyme. In western blots this antiserum recognized a protein of about 95kDa, consistent with the predicted molecular mass of TcHIP (95.4kDa), in whole extracts of T. cruzi epimastigotes, metacyclic trypomastigotes and intracellular amastigotes. Immunolocalization by confocal microscopy showed TcHIP labeling at the Golgi complex, co-localizing with the T. cruzi Golgi marker TcRab7-GFP. Transfectant T. cruzi epimastigotes containing a construct encoding TcHIP fused to proteins A and C (TcHIP/AC) were obtained. In western blotting experiments, the TcHIP polyclonal antiserum recognized both native and TcHIP/AC proteins in extracts of the transfectants. Confocal microscopy showed co-localization of native TcHIP with TcHIP/AC. These findings demonstrate the presence of a putative zDHHC palmitoyl transferase (TcHIP) containing ankyrin and zDHHC domains in different developmental forms of T. cruzi, and its association with the Golgi complex.
    Experimental Parasitology 02/2013; DOI:10.1016/j.exppara.2013.01.023 · 1.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The protozoan parasite Trypanosoma cruzi displays similarities to fungi in terms of its sterol lipid biosynthesis, as ergosterol and other 24-alkylated sterols are its principal endogenous sterols. The sterol pathway is thus a potential drug target for the treatment of Chagas disease. We describe here a comparative study of the growth inhibition, ultrastructural and physiological changes leading to the death of T. cruzi cells following treatment with the sterol biosynthesis inhibitors (SBIs) ketoconazole and lovastatin. We first calculated the drug concentration inhibiting epimastigote growth by 50% (EC(50)/72 h) or killing all cells within 24 hours (EC(100)/24 h). Incubation with inhibitors at the EC(50)/72 h resulted in interesting morphological changes: intense proliferation of the inner mitochondrial membrane, which was corroborated by flow cytometry and confocal microscopy of the parasites stained with rhodamine 123, and strong swelling of the reservosomes, which was confirmed by acridine orange staining. These changes to the mitochondria and reservosomes may reflect the involvement of these organelles in ergosterol biosynthesis or the progressive autophagic process culminating in cell lysis after 6 to 7 days of treatment with SBIs at the EC(50)/72 h. By contrast, treatment with SBIs at the EC(100)/24 h resulted in rapid cell death with a necrotic phenotype: time-dependent cytosolic calcium overload, mitochondrial depolarization and reservosome membrane permeabilization (RMP), culminating in cell lysis after a few hours of drug exposure. We provide the first demonstration that RMP constitutes the "point of no return" in the cell death cascade, and propose a model for the necrotic cell death of T. cruzi. Thus, SBIs trigger cell death by different mechanisms, depending on the dose used, in T. cruzi. These findings shed new light on ergosterol biosynthesis and the mechanisms of programmed cell death in this ancient protozoan parasite.
    PLoS ONE 01/2013; 8(1):e55497. DOI:10.1371/journal.pone.0055497 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trypanosomes are parasitic protozoa in which gene expression is primarily controlled through the regulation of mRNA stability and translation. This post-transcriptional control is mediated by various families of RNA-binding proteins, including those with zinc finger CCCH motifs. CCCH zinc finger proteins have been shown to be essential to differentiation events in trypanosomatid parasites. Here, we functionally characterise TcZFP2 as a predicted post-transcriptional regulator of differentiation in Trypanosoma cruzi. This protein was detected in cell culture-derived amastigotes and trypomastigotes, but it was present in smaller amounts in metacyclic trypomastigote forms of T. cruzi. We use an optimised recombinant RNA immunopreciptation followed by microarray analysis assay to identify TcZFP2 target mRNAs. We further demonstrate that TcZFP2 binds an A-rich sequence in which the adenosine residue repeats are essential for high-affinity recognition. An analysis of the expression profiles of the genes encoding the TcZFP2-associated mRNAs throughout the parasite life cycle by microarray hybridisation showed that most of the associated mRNAs were upregulated in the metacyclic trypomastigote forms, also suggesting a role for TcZFP2 in metacyclic trypomastigote differentiation. Knockdown of the orthologous Trypanosoma brucei protein levels showed ZFP2 to be a positive regulator of specific target mRNA abundance.
    Memórias do Instituto Oswaldo Cruz 09/2012; 107(6):790-9. DOI:10.1590/S0074-02762012000600014 · 1.57 Impact Factor
  • Iriane Eger, Maurilio José Soares
    [Show abstract] [Hide abstract]
    ABSTRACT: Here we describe the visualization by confocal microscopy of ingested gold (15nm)-labeled transferrin in epimastigote forms of the protozoan Trypanosoma cruzi. Intracellular gold labeling was evident at two sites, which represent the bottom of the cytopharynx and the reservosomes. The gold tracer was best observed by confocal microscopy by using the 633nm excitation wavelength. Intracellular gold clusters larger than 60nm could be visualized by either gold reflection (light scattering) or photoluminescence modes. The gold reflection mode, the gold photoluminescence mode and the anti-transferrin immunofluorescence image of gold-labeled transferrin showed co-localization, thus demonstrating that the gold visualization modes did not represent artifacts or mislocalization of the biomarker. Visualization of protein-gold nanoparticle complexes by confocal microscopy thus emerges as a promising imaging tool to explore the endocytic pathway in trypanosomes and other cell types, as well as to perform immunolocalization studies using gold-labeled secondary antibodies.
    Journal of microbiological methods 07/2012; 91(1):101-5. DOI:10.1016/j.mimet.2012.07.013 · 2.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leishmania amazonensis lacks a de novo mechanism for cholesterol synthesis and therefore must scavenge this lipid from the host environment. In this study we show that the L. amazonensis takes up and metabolizes human LDL(1) particles in both a time and dose-dependent manner. This mechanism implies the presence of a true LDL receptor because the uptake is blocked by both low temperature and by the excess of non-labelled LDL. This receptor is probably associated with specific microdomains in the membrane of the parasite, such as rafts, because this process is blocked by methyl-β-cyclodextrin (MCBD). Cholesteryl ester fluorescently-labeled LDL (BODIPY-cholesteryl-LDL) was used to follow the intracellular distribution of this lipid. After uptake it was localized in large compartments along the parasite body. The accumulation of LDL was analyzed by flow cytometry using FITC-labeled LDL particles. Together these data show for the first time that L. amazonensis is able to compensate for its lack of lipid synthesis through the use of a lipid importing machinery largely based on the uptake of LDL particles from the host. Understanding the details of the molecular events involved in this mechanism may lead to the identification of novel targets to block Leishmania infection in human hosts.
    Experimental Parasitology 02/2012; 130(4):330-40. DOI:10.1016/j.exppara.2012.02.014 · 1.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trypanosoma cruzi is a rare example of an eukaryote that has genes for two threonine proteases: HslVU complex and 20S proteasome. HslVU is an ATP-dependent protease consisting of two multimeric components: the HslU ATPase and the HslV peptidase. In this study, we expressed and obtained specific antibodies to HslU and HslV recombinant proteins and demonstrated the interaction between HslU/HslV by coimmunoprecipitation. To evaluate the intracellular distribution of HslV in T. cruzi we used an immunofluorescence assay and ultrastructural localization by transmission electron microscopy. Both techniques demonstrated that HslV was localized in the kinetoplast of epimastigotes. We also analyzed the HslV/20S proteasome co-expression in Y, Berenice 62 (Be-62) and Berenice 78 (Be-78) T. cruzi strains. Our results showed that HslV and 20S proteasome are differently expressed in these strains. To investigate whether a proteasome inhibitor could modulate HslV and proteasome expressions, epimastigotes from T. cruzi were grown in the presence of PSI, a classical proteasome inhibitor. This result showed that while the level of expression of HslV/20S proteasome is not affected in Be-78 strain, in Y and Be-62 strains the presence of PSI induced a significantly increase in Hslv/20S proteasome expression. Together, these results suggest the coexistence of the protease HslVU and 20S proteasome in T. cruzi, reinforcing the hypothesis that non-lysosomal degradation pathways have an important role in T. cruzi biology.
    Experimental Parasitology 11/2011; 130(2):171-7. DOI:10.1016/j.exppara.2011.10.011 · 1.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The family Nematotaeniidae, tapeworms commonly found in the small intestines of amphibians and reptiles, includes 27 recognised species distributed among four genera: Bitegmen Jones, Cylindrotaenia Jewell, Distoichometra Dickey and Nematotaenia Lühe. The taxonomy of these cestodes is poorly defined, due in part to the difficulties of observing many anatomical traits. This study presents and describes a new genus and species of nematotaeniid parasite found in cane toads (Rhinella marina) from eastern Brazilian Amazonia. The cestodes were collected during the necropsy of 20 hosts captured in the urban area of Belém, Pará. The specimens were fixed and processed for light microscopy, scanning electron microscopy (SEM) and three-dimensional (3D) reconstruction. Samples were also collected for molecular analyses. The specimens presented a cylindrical body, two testes and paruterine organs. However, they could not be allocated to any of the four existing nematotaeniid genera due to the presence of two each of dorsal compact medullary testes, cirri, cirrus pouches, genital pores, ovaries and vitelline glands per mature segment. Lanfrediella amphicirrus gen. nov. sp. nov. is the first nematotaeniid studied using Historesin analysis, SEM and 3D reconstruction, and it is the second taxon for which molecular data have been deposited in GenBank.
    Memórias do Instituto Oswaldo Cruz 09/2011; 106(6):670-7. DOI:10.1590/S0074-02762011000600005 · 1.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the roles of mast cells (MCs) are essential in many inflammatory and fibrotic diseases, their role in Trypanosoma cruzi-induced cardiomyopathy is unexplored. In this study, we treated infected CBA mice with cromolyn, an MC stabilizer, and observed much greater parasitemia and interferon-γ levels, higher mortality, myocarditis, and cardiac damage. Although these data show that MCs are important in controlling acute infection, we observed MC apoptosis in the cardiac tissue and peritoneal cavity of untreated mice. In the heart, pericardial mucosal MC die, perhaps because of reduced amounts of local stem cell factor. Using RT-PCR in purified cardiac MCs, we observed that infection induced transcription of P2X(7) receptor and Fas, two molecules reportedly involved in cell death and inflammatory regulation. In gld/gld mice (FasL(-/-)), apoptosis of cardiac, but not peritoneal, MCs was decreased. Conversely, infection of P2X(7)(-/-) mice led to reduced peritoneal, but not cardiac, MC death. These data illustrate the immunomodulatory role played by MCs in T. cruzi infection and the complexity of molecular interactions that control inflammatory pathways in different tissues and compartments.
    American Journal Of Pathology 08/2011; 179(4):1894-904. DOI:10.1016/j.ajpath.2011.06.014 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The sand fly Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae: Phlebotominae) is the main vector of American visceral leishmaniasis. Adult males produce a terpenoid sex pheromone that in some cases also acts as male aggregation pheromone. We have analyzed the correlation between male pheromone production levels and pheromone gland cell morphogenesis after adult emergence from pupae. The abdominal tergites of L. longipalpis males were dissected and fixed in glutaraldehyde for transmission electron microscopy, or the pheromone was extracted in analytical grade hexane. Pheromone chemical analysis was carried out at 3- to 6-h intervals during the first 24 h after emergence and continued daily until the seventh day. All extracts were analyzed by gas chromatography. For the morphological analysis, we used insects collected at 0-6, 9-12, 12-14, and 96 h after emergence. Ultrastructural data from 0- to 6-h-old adult males revealed smaller pheromone gland cells with small microvilli at the end apparatus. Lipid droplets and peroxisomes were absent or very rare, but a large number of mitochondria could be seen. Lipid droplets started to appear in the gland cells cytoplasm approximately 9 h after adult emergence, and their number and size increased with age, together with the presence of several peroxisomes, suggesting a role for these organelles in pheromone biosynthesis. At 12-15 h after emergence, the lipid droplets were mainly distributed near the microvilli but were smaller than those in mature older males (4 d old). Pheromone biosynthesis started around 12 h after emergence and increased continuously during the first 3 d, stabilizing thereafter, coinciding with the period when males are more able to attract females.
    Journal of Medical Entomology 05/2011; 48(3):489-95. DOI:10.1603/ME10133 · 1.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two species of trypanosomatids, Crithidia desouzai and Herpetomonas anglusteri, were recently isolated from Diptera in Minas Gerais, Brazil. The Crithidia species was found to harbor bacterium-like endosymbionts in the cytoplasm. To biochemically characterize these two species of trypanosomatids, and to try to verify the evolutionary meaning of the presence of endosymbionts, an electrophoretic study was undertaken whereby the two species were compared with eight other species in the same family. Horizontal 12.5% starch gel electrophoresis was used to resolve the isozymes of eight enzyme systems: acid phosphatase, glucose-6-phosphate dehydrogenase, hexokinase, malate dehydrogenase, malic enzyme, 6-phosphogluconate dehydrogenase, phosphoglucose isomerase, and phosphoglucomutase. Ten other enzyme systems were assayed without yielding any reproducible activity. The isozymes observed were conservatively interpreted as being due to the activity of 44 different alleles. All species studied differed in at least one enzyme system. The phenetic (Jaccard similarity index, UPGMA grouping) analysis produced a tree in which the species of Crithidia and Herpetomonas clustered separately, forming monophyletic groupings. All the endosymbiont-bearing species formed a monophyletic cluster, indicating that the presence of bacterium-like endosymbionts may be a synapomorphy of that group, and may represent, therefore, a unique event in the evolution of the genus.
    Canadian Journal of Zoology 02/2011; 69(3):571-577. DOI:10.1139/z91-086 · 1.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A flagellate trypanosomatid was isolated from the fly Phaenicia cuprina captured in Rio de Janeiro, Brazil. It grows well in liver infusion – trypticase medium, in the form of choanomastigotes, typical of the genus Crithidia. Morphometrical data obtained at the light microscopical level indicated that the new isolated Crithidia is smaller than Crithidia luciliae, a parasite isolated from Phaenicia sericata. Transmission electron microscopy of thin sections revealed that this trypanosomatid has a flagellar pocket divided into two compartments, one basal and the other apical, separated by a region of attachment of the flagellum to the cell body. The attachment region was characterized in freeze-fracture replicas. The flagellate has a compact kinetoplast DNA network. As in endosymbiote-containing trypanosomatids previously described, no subpellicular microtubules were seen in the regions where the mitochondria touched the plasma membrane, although no endosymbiotes were found in this flagellate. Electrophoretic mobility of six enzymes showed that the parasite could not be grouped in any of the isoenzymic pattern groups of other Crithidia spp. These observations indicate that the trypanosomatid isolated from P. cuprina is a new species of Crithidia. The flagellate is described as Crithidia guilhermei n.sp.
    Canadian Journal of Zoology 02/2011; 64(12):2837-2842. DOI:10.1139/z86-408 · 1.35 Impact Factor

Publication Stats

1k Citations
180.43 Total Impact Points

Institutions

  • 2013
    • CEP America
      Емеривил, California, United States
  • 2008–2013
    • Fundação Carlos Chagas
      San Paulo, São Paulo, Brazil
  • 2008–2011
    • Instituto de Biologia Molecular do Paraná
      Curityba, Paraná, Brazil
  • 1993–2011
    • Fundação Oswaldo Cruz
      • Departamento de Biologia Celular e Ultraestrutura Celular (CPqAM)
      Rio de Janeiro, Rio de Janeiro, Brazil
  • 1987–2011
    • Federal University of Rio de Janeiro
      • Instituto de Biofísica Carlos Chagas Filho (IBCCF)
      Rio de Janeiro, Rio de Janeiro, Brazil
  • 2004
    • Universidade Federal de São Paulo
      San Paulo, São Paulo, Brazil
  • 1996
    • Universidade Estadual do Norte Fluminense
      • Laboratory of Cell and Tissue Biology – LBCT
      Rio de Janeiro, Rio de Janeiro, Brazil