Martha P. Haynes

Cornell University, Итак, New York, United States

Are you Martha P. Haynes?

Claim your profile

Publications (374)1211.4 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Leo P is a low-luminosity dwarf galaxy discovered through the blind HI Arecibo Legacy Fast ALFA (ALFALFA) survey. The HI and follow-up optical observations have shown that Leo P is a gas-rich dwarf galaxy with active star formation, an underlying older population, and an extremely low oxygen abundance. We have obtained optical imaging from the Hubble Space Telescope to study the evolution of Leo P. We refine the distance measurement to Leo~P to be 1.62+/-0.15 Mpc, based on the luminosity of the horizontal branch stars and 10 newly identified RR Lyrae candidates. This places the galaxy at the edge of the Local Group, ~0.4 Mpc from the loose association of dwarfs that includes Sextans A, Sextans B, Antlia, and NGC 3109. The star responsible for ionizing the HII region is most likely an O7V or O8V spectral type, with a stellar mass >25 Msun. The presence of this star provides observational evidence that massive stars at the upper-end of the initial mass function are capable of being formed at star formation rates as low as ~10^-5 Msun/yr. The best-fitting star formation history derived from the resolved stellar populations of Leo P using the latest PARSEC models shows a relatively constant star formation rate over the lifetime of the galaxy. The modeled luminosity characteristics of Leo P at early times are consistent with low-luminosity dSph Milky Way satellites, suggesting that Leo P is what a low-mass dSph would look like if it evolved in isolation and retained its gas. Despite the very low mass of Leo P, the imprint of reionization on its star formation history is subtle at best, and consistent with being totally negligible. The isolation of Leo P, and the total quenching of star formation of Milky Way satellites of similar mass, implies that local environment dominates the quenching of the Milky Way satellites.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HI in galaxies traces the fuel for future star formation and reveals the effects of feedback on neutral gas. Using a statistically uniform, HI-selected sample of 565 galaxies from the ALFALFA H-alpha survey, we explore HI properties as a function of star formation activity. ALFALFA H-alpha provides R-band and H-alpha imaging for a volume-limited subset of the 21-cm ALFALFA survey. We identify eight starbursts based on H-alpha equivalent width and six with enhanced star formation relative to the main sequence. Both starbursts and non-starbursts have similar HI to stellar mass ratios (MHI/M*), which suggests that feedback is not depleting the starbursts' HI. Consequently, the starbursts do have shorter HI depletion times (t_dep), implying more efficient HI-to-H2 conversion. While major mergers likely drive this enhanced efficiency in some starbursts, the lowest mass starbursts may experience periodic bursts, consistent with enhanced scatter in t_dep at low M*. Two starbursts appear to be pre-coalescence mergers; their elevated MHI/M* suggest that HI-to-H2 conversion is still ongoing at this stage. By comparing with the GASS sample, we find that t_dep anti-correlates with stellar surface density for disks, while spheroids show no such trend. Among early-type galaxies, t_dep does not correlate with bulge-to-disk ratio; instead, the gas distribution may determine the star formation efficiency. Finally, the weak connection between galaxies' specific star formation rates and MHI/M* contrasts with the well-known correlation between MHI/M* and color. We show that dust extinction can explain the HI-color trend, which may arise from the relationship between M*, MHI, and metallicity.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We revisit the main HI-to-stellar mass ratio (gas fraction) scaling relations, taking advantage of the HI spectral stacking technique to understand the dependence of gas content on the structural and star formation properties of nearby galaxies. This work uses a volume-limited, multi-wavelength sample of ~25,000 galaxies, selected according to stellar mass (10^9 M_sol < M_* < 10^11.5 M_sol) and redshift (0.02 < z < 0.05) from the Sloan Digital Sky Survey, and with HI data from the Arecibo Legacy Fast ALFA survey. We bin according to multiple parameters of galaxies spanning the full gas-poor to -rich regime in order to disentangle the dominance of different components and processes in influencing gas content. For the first time, we show that the scaling relations of gas fraction with stellar mass and stellar surface density are primarily driven by a combination of the underlying galaxy bimodality in specific star formation rate and the integrated Kennicutt-Schmidt law. Finally, we produce tentative evidence that the timescales of HI depletion are dependent upon galaxy mass and structure, at fixed specific star formation rate.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A growing body of evidence indicates that the star formation rate per unit stellar mass (sSFR) decreases with increasing mass in normal "main-sequence" star forming galaxies. Many processes have been advocated as responsible for such a trend (also known as mass quenching), e.g., feedback from active galactic nuclei (AGNs), and the formation of classical bulges. We determine a refined star formation versus stellar mass relation in the local Universe. To this aim we use the Halpha narrow-band imaging follow-up survey (Halpha3) of field galaxies selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA) in the Coma and Local superclusters. By complementing this local determination with high-redshift measurements from the literature, we reconstruct the star formation history of main-sequence galaxies as a function of stellar mass from the present epoch up to z=3. In agreement with previous studies, our analysis shows that quenching mechanisms occur above a threshold stellar mass M_knee that evolves with redshift as propto (1+z)^{2}. Moreover, visual morphological classification of individual objects in our local sample reveals a sharp increase in the fraction of visually-classified strong bars with mass, hinting that strong bars may contribute to the observed downturn in the sSFR above M_knee. We test this hypothesis using a simple but physically-motivated numerical model for bar formation, finding that strong bars can rapidly quench star formation in the central few kpc of field galaxies. We conclude that strong bars contribute significantly to the red colors observed in the inner parts of massive galaxies, although additional mechanisms are likely required to quench the star formation in the outer regions of massive spiral galaxies. Intriguingly, when we extrapolate our model to higher redshifts, we successfully recover the observed redshift evolution for M_knee.
    Astronomy and Astrophysics 05/2015; DOI:10.1051/0004-6361/201425351 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neutral hydrogen represents the major observable baryonic constituent of galaxies that fuels the formation of stars through the transformation in molecular hydrogen. The emission of the hydrogen recombination line Halpha is the most direct tracer of the process that transforms gas (fuel) into stars. We continue to present Halpha3 (acronym for Halpha-alpha-alpha), an extensive Halpha+[NII] narrow-band imaging campaign of galaxies selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA), using the instrumentation available at the San Pedro Martir observatory (Mexico). In only four years since 2011 we were able to complete in 48 nights the Halpha imaging observations of 724 galaxies in the region of the Coma supercluster 10^h < R.A. <16^h; 24^o < Dec. <28^o and 3900<cz<9000 kms^{-1}. Of these, 603 are selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA) and constitute a 97% complete sample. They provide for the first time a complete census of the massive star formation properties of local gas-rich galaxies belonging to different environments (cluster vs filaments), morphological type (spirals vs dwarf Irr), over a wide range of stellar mass (10^{8}-10^{11.5} Modot) in the Coma Supercluster. The present Paper V provides the Halpha data and the derived star formation rates for the observed galaxies.
    Astronomy and Astrophysics 05/2015; DOI:10.1051/0004-6361/201425349 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a comprehensive model to predict the rate of spectroscopic confusion in HI surveys, and demonstrate good agreement with the observable confusion in existing surveys. Generically the action of confusion on the HI mass function was found to be a suppression of the number count of sources below the `knee', and an enhancement above it. This results in a bias, whereby the `knee' mass is increased and the faint end slope is steepened. For ALFALFA and HIPASS we find that the maximum impact this bias can have on the Schechter fit parameters is similar in magnitude to the published random errors. On the other hand, the impact of confusion on the HI mass functions of upcoming medium depth interferometric surveys, will be below the level of the random errors. In addition, we find that previous estimates of the number of detections for upcoming surveys with SKA-precursor telescopes may have been too optimistic, as the framework implemented here results in number counts between 60% and 75% of those previously predicted, while accurately reproducing the counts of existing surveys. Finally, we argue that any future single dish, wide area surveys of HI galaxies would be best suited to focus on deep observations of the local Universe (z < 0.05), as confusion may prevent them from being competitive with interferometric surveys at higher redshift, while their lower angular resolution allows their completeness to be more easily calibrated for nearby extended sources.
    Monthly Notices of the Royal Astronomical Society 02/2015; 449(2). DOI:10.1093/mnras/stv429 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery and follow-up observations of a system of three objects identified by the ALFALFA extragalactic HI survey, cataloged as (almost) dark extragalactic sources, i.e., extragalactic HI detections with no discernible counterpart in publicly available, wide-field, imaging surveys. We have obtained deep optical imaging with WIYN pODI and HI synthesis maps with WSRT of the HI1232+20 system. The source with the highest HI flux has a newly discovered ultra-low surface brightness (LSB) optical counterpart associated with it, while the other two sources have no detected optical counterparts in our images. Our optical observations show that the detected LSB optical counterpart has a peak surface brightness of ~26.4 mag/arcsec^2 in g', which is exceptionally faint. This source (AGC 229385) has the largest accurately measured HI mass-to-light ratio of an isolated object: MHI/Lg'=46 Msun/Lsun, and has an HI mass of 7.2*10^8 Msun. The other two HI sources (with HI masses 2.0*10^8 and 1.2*10^8 Msun) without optical counterparts have upper limit surface brightnesses of 27.9 and 27.8 mag/arcsec^2 in g', and lower limits on their gas mass-to-light ratio of MHI/Lg'>57 and >31 Msun/Lsun. This system lies relatively close in projection to the Virgo Cluster, but velocity flow models indicate that it is located at ~25 Mpc, substantially beyond Virgo. The system appears to be quite isolated, with no known object closer than 500 kpc. These HI sources may represent both sides of the threshold between "dark" star-less galaxies and galaxies with stellar populations. We discuss a variety of possible formation scenarios for the HI1232+20 system.
    The Astrophysical Journal 02/2015; 801(2). DOI:10.1088/0004-637X/801/2/96 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Survey of HI in Extremely Low-mass Dwarfs (SHIELD) is an on-going multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies that populate the faint end of the galaxy luminosity function. The galaxies were selected from the first ~10% of the HI ALFALFA survey based on their low HI mass and low baryonic mass. Here, we measure the star-formation properties from optically resolved stellar populations for 12 galaxies using a color-magnitude diagram fitting technique. We derive lifetime average star-formation rates (SFRs), recent SFRs, stellar masses, and gas fractions. Overall, the recent SFRs are comparable to the lifetime SFRs with mean birthrate parameter of 1.4, with a surprisingly narrow standard deviation of 0.7. Two galaxies are classified as dwarf transition galaxies (dTrans). These dTrans systems have star-formation and gas properties consistent with the rest of the sample, in agreement with previous results that some dTrans galaxies may simply be low-luminosity dIrrs. We do not find a correlation between the recent star-formation activity and the distance to the nearest neighboring galaxy, suggesting that the star-formation process is not driven by gravitational interactions, but regulated internally. Further, we find a broadening in the star-formation and gas properties (i.e., specific SFRs, stellar masses, and gas fractions) compared to the generally tight correlation found in more massive galaxies. Overall, the star-formation and gas properties indicate these very low-mass galaxies host a fluctuating, non-deterministic, and inefficient star-formation process.
    The Astrophysical Journal 01/2015; 802(1). DOI:10.1088/0004-637X/802/1/66 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present VLA HI spectral line imaging of 5 sources discovered by ALFALFA. These targets are drawn from a larger sample of systems that were not uniquely identified with optical counterparts during ALFALFA processing, and as such have unusually high HI mass to light ratios. These candidate "Almost Dark" objects fall into 4 categories: 1) objects with nearby HI neighbors that are likely of tidal origin; 2) objects that appear to be part of a system of multiple HI sources, but which may not be tidal in origin; 3) objects isolated from nearby ALFALFA HI detections, but located near a gas-poor early-type galaxy; 4) apparently isolated sources, with no object of coincident redshift within ~400 kpc. Roughly 75% of the 200 objects without identified counterparts in the $\alpha$.40 database (Haynes et al. 2011) fall into category 1. This pilot sample contains the first five sources observed as part of a larger effort to characterize HI sources with no readily identifiable optical counterpart at single dish resolution. These objects span a range of HI mass [7.41 < log(M$_{\rm HI}$) < 9.51] and HI mass to B-band luminosity ratios (3 < M$_{\rm HI}$/L$_{\rm B}$ < 9). We compare the HI total intensity and velocity fields to SDSS optical imaging and to archival GALEX UV imaging. Four of the sources with uncertain or no optical counterpart in the ALFALFA data are identified with low surface brightness optical counterparts in SDSS imaging when compared with VLA HI intensity maps, and appear to be galaxies with clear signs of ordered rotation. One source (AGC 208602) is likely tidal in nature. We find no "dark galaxies" in this limited sample. The present observations reveal complex sources with suppressed star formation, highlighting both the observational difficulties and the necessity of synthesis follow-up observations to understand these extreme objects. (abridged)
    The Astronomical Journal 12/2014; 149(2). DOI:10.1088/0004-6256/149/2/72 · 4.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present neutral hydrogen (HI) imaging observations with the Westerbork Synthesis Radio Telescope of AGC198606, an HI cloud discovered in the ALFALFA 21cm survey. This object is of particular note as it is located 16 km/s and 1.2 degrees from the gas-bearing ultra-faint dwarf galaxy Leo T while having a similar HI linewidth and approximately twice the flux density. The HI imaging observations reveal a smooth, undisturbed HI morphology with a full extent of 23'x16' at the 5x10^18 atoms cm^-2 level. The velocity field of AGC198606 shows ordered motion with a gradient of ~25 km/s across ~20'. The global velocity dispersion is 9.3 km/s with no evidence for a narrow spectral component. No optical counterpart to AGC198606 is detected. The distance to AGC198606 is unknown, and we consider several different scenarios: physical association with Leo T, a minihalo at a distance of ~150 kpc based on the models of Faerman et al. (2013), and a cloud in the Galactic halo. At a distance of 420 kpc, AGC198606 would have an HI mass of 6.2x10^5 Msun, an HI radius of 1.4 kpc, and a dynamical mass within the HI extent of 1.5x10^8 Msun.
    Astronomy and Astrophysics 11/2014; 573. DOI:10.1051/0004-6361/201425211 · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present first results of the study of a set of exceptional H I sources identified in the 40% ALFALFA extragalactic H I survey catalog alpha.40 as both being H I massive (M-H I > 10(10) M-circle dot) and having high gas fractions for their stellar masses: the HIghMass galaxy sample. We analyze UV- and optical-broadband and H alpha images to understand the nature of their relatively underluminous disks in optical and to test whether their high gas fractions can be tracked to higher dark matter halo spin parameters or late gas accretion. Estimates of their star formation rates (SFRs) based on spectral energy distribution fitting agree within uncertainties with the Ha luminosity inferred current massive SFRs. The H II region luminosity functions, parameterized as dN/d log L alpha L-alpha, have standard slopes at the luminous end (alpha similar to -1). The global SFRs demonstrate that the HIghMass galaxies exhibit active ongoing star formation (SF) with moderate SF efficiency but, relative to normal spirals, a lower integrated SFR in the past. Because the SF activity in these systems is spread throughout their extended disks, they have overall lower SFR surface densities and lower surface brightness in the optical bands. Relative to normal disk galaxies, the majority of HIghMass galaxies have higher H alpha equivalent widths and are bluer in their outer disks, implying an inside-out disk growth scenario. Downbending double exponential disks are more frequent than upbending disks among the gas-rich galaxies, suggesting that SF thresholds exist in the downbending disks, probably as a result of concentrated gas distribution.
    The Astrophysical Journal 09/2014; 793(1):40. DOI:10.1088/0004-637X/793/1/40 · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present resolved H I observations of two galaxies, UGC 9037 and UGC 12506, members of a rare subset of galaxies detected by the ALFALFA extragalactic H I survey characterized by high H I mass and high gas fraction for their stellar masses. Both of these galaxies have M * > 1010M ☉ and M *, as well as typical star formation rates for their stellar masses. How can such galaxies have avoided consuming their massive gas reservoirs? From gas kinematics, stability, star formation, and dark matter distributions of the two galaxies, we infer two radically different histories. UGC 9037 has high central H I surface density (>10 M ☉ pc–2). Its gas at most radii appears to be marginally unstable with non-circular flows across the disk. These properties are consistent with UGC 9037 having recently acquired its gas and that it will soon undergo major star formation. UGC 12506 has low surface densities of H I, and its gas is stable over most of the disk. We predict its gas to be H I-dominated at all except the smallest radii. We claim a very high dark matter halo spin parameter for UGC 12506 (λ = 0.15), suggesting that its gas is older, and has never undergone a period of star formation significant enough to consume the bulk of its gas.
    The Astronomical Journal 09/2014; 148(4):69. DOI:10.1088/0004-6256/148/4/69 · 4.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We measure the HI mass function (HIMF) and velocity width function (WF) across environments over a range of masses $7.2<\log(M_{HI}/M_{\odot})<10.8$, and profile widths $1.3\log(km/s)<\log(W)<2.9\log(km/s)$, using a catalog of ~7,300 HI-selected galaxies from the ALFALFA Survey, located in the region of sky where ALFALFA and SDSS (Data Release 7) North overlap. We divide our galaxy sample into those that reside in large-scale voids (void galaxies) and those that live in denser regions (wall galaxies). We find the void HIMF to be well fit by a Schechter function with normalization $\Phi^*=(1.37\pm0.1)\times10^{-2} h^3Mpc^{-3}$, characteristic mass $\log(M^*/M_{\odot})+2\log h_{70}=9.86\pm0.02$, and low-mass-end slope $\alpha=-1.29\pm0.02$. Similarly, for wall galaxies, we find best-fitting parameters $\Phi^*=(1.82\pm0.03)\times10^{-2} h^3Mpc^{-3}$, $\log(M^*/M_{\odot})+2\log h_{70}=10.00\pm0.01$, and $\alpha=-1.35\pm0.01$. We conclude that void galaxies typically have slightly lower HI masses than their non-void counterparts, which is in agreement with the dark matter halo mass function shift in voids assuming a simple relationship between DM mass and HI mass. We also find that the low-mass slope of the void HIMF is similar to that of the wall HIMF suggesting that there is either no excess of low-mass galaxies in voids or there is an abundance of intermediate HI mass galaxies. We fit a modified Schechter function to the ALFALFA void WF and determine its best-fitting parameters to be $\Phi^*=0.21\pm0.1 h^3Mpc^{-3}$, $\log(W^*)=2.13\pm0.3$, $\alpha=0.52\pm0.5$ and high-width slope $\beta=1.3\pm0.4$. For wall galaxies, the WF parameters are: $\Phi^*=0.022\pm0.009 h^3Mpc^{-3}$, $\log(W^*)=2.62\pm0.5$, $\alpha=-0.64\pm0.2$ and $\beta=3.58\pm1.5$. Because of large uncertainties on the void and wall width functions, we cannot conclude whether the WF is dependent on the environment.
    Monthly Notices of the Royal Astronomical Society 08/2014; 444(4). DOI:10.1093/mnras/stu1674 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present first results of the study of a set of exceptional HI sources identified in the 40% ALFALFA extragalactic HI survey catalog alpha.40 as being both HI massive (M_HI > 10^10 Msun) and having high gas fractions for their stellar masses: the HIghMass galaxy sample. We analyze UV- and optical-broadband and Halpha images to understand the nature of their relatively underluminous disks in optical and to test whether their high gas fractions can be tracked to higher dark matter halo spin parameters or late gas accretion. Estimates of their star formation rates (SFRs) based on SED-fitting agree within uncertainties with the Halpha luminosity inferred SFRs. The HII region luminosity functions have standard slopes at the luminous end. The global SFRs demonstrate that the HIghMass galaxies exhibit active ongoing star formation (SF) with moderate SF efficiency, but relative to normal spirals, a lower integrated SFR in the past. Because the SF activity in these systems is spread throughout their extended disks, they have overall lower SFR surface densities and lower surface brightness in the optical bands. Relative to normal disk galaxies, the majority of HIghMass galaxies have higher Halpha equivalent widths and are bluer in their outer disks, implying an inside-out disk growth scenario. Downbending double exponential disks are more frequent than upbending disks among the gas-rich galaxies, suggesting that SF thresholds exist in the downbending disks, probably as a result of concentrated gas distribution.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use the Arecibo Legacy Fast ALFA (ALFALFA) 21cm survey to measure the number density of galaxies as a function of their rotational velocity, Vrot,HI (as inferred from the width of their 21cm emission line). Based on the measured velocity function we statistically connect galaxies with their host halos, via abundance matching. In a LCDM cosmology, low-velocity galaxies are expected to be hosted by halos that are significantly more massive than indicated by the measured galactic velocity; allowing lower mass halos to host ALFALFA galaxies would result in a vast overestimate of their number counts. We then seek observational verification of this predicted trend, by analyzing the kinematics of a literature sample of field dwarf galaxies. We find that galaxies with Vrot,HI<25 km/s are kinematically incompatible with their predicted LCDM host halos, in the sense that hosts are too massive to be accommodated within the measured galactic rotation curves. This issue is analogous to the "too big to fail" problem faced by the bright satellites of the Milky Way, but here it concerns extreme dwarf galaxies in the field. Consequently, solutions based on satellite-specific processes are not applicable in this context. Our result confirms the findings of previous studies based on optical survey data, and addresses a number of observational systematics present in these works. Furthermore, we point out the assumptions and uncertainties that could strongly affect our conclusions. We show that the two most important among them, namely baryonic effects on the abundances and rotation curves of halos, do not seem capable of resolving the reported discrepancy.
    Astronomy and Astrophysics 07/2014; 574. DOI:10.1051/0004-6361/201424909 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present GMRT HI observations and deep CFHT MegaCam optical images of the gas-rich interacting galaxy group NGC 871/NGC 876/NGC 877 (hereafter NGC 871/6/7). Our high-resolution data sets provide a census of the HI and stellar properties of the detected gas-rich group members. In addition to a handful of spiral, irregular and dwarf galaxies, this group harbours an intriguing HI feature, AGC 749170, that has a gas mass of ~10^9.3 M_sol, a dynamical-to-gas mass ratio of ~1 (assuming the cloud is rotating and in dynamical equilibrium) and no optical counterpart in previous imaging. Our observations have revealed a faint feature in the CFHT g'- and r'-bands; if it is physically associated with AGC 749170, the latter has M/L_g > 1000 M_sol/L_sol as well as a higher metallicity (estimated using photometric colours) and a significantly younger stellar population than the other low-mass gas-rich group members. These properties, as well as its spectral and spatial location with respect to its suspected parent galaxies, strongly indicate a tidal origin for AGC 749170. Overall, the HI properties of AGC 749170 resemble those of other optically dark/dim clouds that have been found in groups. These clouds could represent a class of relatively long-lived HI-rich tidal remnants that survive in intermediate-density environments.
    Monthly Notices of the Royal Astronomical Society 07/2014; 443(4). DOI:10.1093/mnras/stu1345 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present resolved HI observations of two galaxies, UGC 9037 and UGC 12506, members of a rare subset of galaxies detected by the ALFALFA extragalactic HI survey characterized by high HI mass and high gas fraction for their stellar masses. Both of these galaxies have M$_*>10^{10}$ M$_\odot$ and M$_\text{HI}>$ M$_*$, as well as typical star formation rates for their stellar masses. How can such galaxies have avoided consuming their massive gas reservoirs? From gas kinematics, stability, star formation, and dark matter distributions of the two galaxies, we infer two radically different histories. UGC 9037 has high central HI surface density ($>10$ M$_\odot$ pc$^{-2}$). Its gas at most radii appears to be marginally unstable with non-circular flows across the disk. These properties are consistent with UGC 9037 having recently acquired its gas and that it will soon undergo major star formation. UGC 12506 has low surface densities of HI, and its gas is stable over most of the disk. We predict its gas to be HI-dominated at all except the smallest radii. We claim a very high dark matter halo spin parameter for UGC 12506 ($\lambda=0.15$), suggesting that its gas is older, and has never undergone a period of star formation significant enough to consume the bulk of its gas.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present new HI spectral line imaging of the extremely metal-poor, star-forming dwarf irregular galaxy Leo P. Our HI images probe the global neutral gas properties and the local conditions of the interstellar medium (ISM). The HI morphology is slightly elongated along the optical major-axis. We do not find obvious signatures of interaction or infalling gas at large spatial scales. The neutral gas disk shows obvious rotation, although the velocity dispersion is comparable to the rotation velocity. The rotation amplitude is estimated to be V_c = 15 +/- 5 km/s. Within the HI radius probed by these observations, the mass ratio of gas to stars is roughly 2:1, while the ratio of the total mass to the baryonic mass is ~15:1. We use this information to place Leo P on the baryonic Tully-Fisher relation, testing the baryonic content of cosmic structures in a sparsely populated portion of parameter space that has hitherto been occupied primarily by dwarf spheroidal galaxies. We detect the signature of two temperature components in the neutral ISM of Leo P; the cold and warm components have characteristic velocity widths of 4.2 +/- 0.9 km/s and 10.1 +/- 1.2 km/s, corresponding to kinetic temperatures of ~1100 K and ~6200 K, respectively. The cold HI component is unresolved at a physical resolution of 200 pc. The highest HI surface densities are observed in close physical proximity to the single HII region. A comparison of the neutral gas properties of Leo P with other extremely metal-deficient (XMD) galaxies reveals that Leo P has the lowest neutral gas mass of any known XMD, and that the dynamical mass of Leo P is more than two orders of magnitude smaller than any known XMD with comparable metallicity.
    The Astronomical Journal 04/2014; 148(2). DOI:10.1088/0004-6256/148/2/35 · 4.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Survey of H I in Extremely Low-mass Dwarf (SHIELD) galaxies is an ongoing multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies. The galaxies were selected from the first ~10% of the H I Arecibo Legacy Fast ALFA (ALFALFA) survey based on their inferred low H I mass and low baryonic mass, and all systems have recent star formation. Thus, the SHIELD sample probes the faint end of the galaxy luminosity function for star-forming galaxies. Here, we measure the distances to the 12 SHIELD galaxies to be between 5 and 12 Mpc by applying the tip of the red giant method to the resolved stellar populations imaged by the Hubble Space Telescope. Based on these distances, the H I masses in the sample range from 4 × 106 to 6 × 107 M ☉, with a median H I mass of 1 × 107 M ☉. The tip of the red giant branch distances are up to 73% farther than flow-model estimates in the ALFALFA catalog. Because of the relatively large uncertainties of flow-model distances, we are biased toward selecting galaxies from the ALFALFA catalog where the flow model underestimates the true distances. The measured distances allow for an assessment of the native environments around the sample members. Five of the galaxies are part of the NGC 672 and NGC 784 groups, which together constitute a single structure. One galaxy is part of a larger linear ensemble of nine systems that stretches 1.6 Mpc from end to end. Three galaxies reside in regions with 1-9 neighbors, and four galaxies are truly isolated with no known system identified within a radius of 1 Mpc.Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
    The Astrophysical Journal 03/2014; 785(1). DOI:10.1088/0004-637X/785/1/3 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Survey of HI in Extremely Low-mass Dwarf galaxies (SHIELD) is an on-going multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies. The galaxies were selected from the first ~10% of the HI ALFALFA survey based on their inferred low HI mass and low baryonic mass, and all systems have recent star formation. Thus, the SHIELD sample probes the faint end of the galaxy luminosity function for star-forming galaxies. Here, we measure the distances to the 12 SHIELD galaxies to be between 5-12 Mpc by applying the tip of the red giant method to the resolved stellar populations imaged by the Hubble Space Telescope. Based on these distances, the HI masses in the sample range from $4\times10^6$ to $6\times10^7$ M$_{\odot}$, with a median HI mass of $1\times10^7$ M$_{\odot}$. The TRGB distances are up to 73% farther than flow-model estimates in the ALFALFA catalog. Because of the relatively large uncertainties of flow model distances, we are biased towards selecting galaxies from the ALFALFA catalog where the flow model underestimates the true distances. The measured distances allow for an assessment of the native environments around the sample members. Five of the galaxies are part of the NGC 672 and NGC 784 groups, which together constitute a single structure. One galaxy is part of a larger linear ensemble of 9 systems that stretches 1.6 Mpc from end to end. Two galaxies reside in regions with 1-4 neighbors, and four galaxies are truly isolated with no known system identified within a radius of 1 Mpc.

Publication Stats

8k Citations
1,211.40 Total Impact Points

Institutions

  • 1987–2015
    • Cornell University
      • • Center for Radiophysics and Space Research (CRSR)
      • • Department of Astronomy
      Итак, New York, United States
  • 2008
    • Carnegie Mellon University
      • Department of Physics
      Pittsburgh, PA, United States
  • 1991–2007
    • University of Milan
      Milano, Lombardy, Italy
    • Université de Montréal
      Montréal, Quebec, Canada
  • 2004
    • University of Cambridge
      • Institute of Astronomy
      Cambridge, England, United Kingdom
  • 2000
    • University of Santiago, Chile
      CiudadSantiago, Santiago Metropolitan, Chile
  • 1993–1999
    • Cornell College
      Cornell, Wisconsin, United States
  • 1998
    • New Mexico Institute of Mining and Technology
      • Department of Physics
      Socorro, New Mexico, United States
    • Wesleyan University
      • Department of Astronomy
      Middletown, Connecticut, United States
  • 1995
    • Ruhr-Universität Bochum
      Bochum, North Rhine-Westphalia, Germany
  • 1986–1988
    • National Astronomy and Ionosphere Center
      ARE, Arecibo, Puerto Rico
  • 1984
    • University of Puerto Rico at Rio Piedras
      • Department of Physics
      San Juan, San Juan, Puerto Rico
  • 1983
    • Massachusetts Institute of Technology
      Cambridge, Massachusetts, United States
  • 1982–1983
    • National Radio Astronomy Observatory
      Charlottesville, Virginia, United States
  • 1981–1983
    • University of Oklahoma
      Norman, Oklahoma, United States
  • 1979
    • University of Bologna
      Bolonia, Emilia-Romagna, Italy
  • 1976–1979
    • Indiana University Bloomington
      • Department of Astronomy
      Bloomington, Indiana, United States