Lynn M Boyden

Yale-New Haven Hospital, New Haven, Connecticut, United States

Are you Lynn M Boyden?

Claim your profile

Publications (8)150.18 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetic investigation of inherited skin disorders has informed understanding of skin self-renewal, differentiation, and barrier function. Erythrokeratodermia variabilis et progressiva (EKVP) is a rare, inherited skin disease characterized by transient figurate patches of erythema, localized or generalized scaling, and frequent palmoplantar keratoderma. By employing exome sequencing, we show that de novo missense mutations in GJA1 (gap junction protein alpha 1) cause EKVP. The severe, progressive skin disease in EKVP subjects with GJA1 mutations is distinct from limited cutaneous findings rarely found in the systemic disorder oculodentodigital dysplasia, also caused by dominant GJA1 mutations. GJA1 encodes connexin 43 (Cx43), the most widely expressed gap junction protein. We show that the GJA1 mutations in EKVP subjects lead to disruption of Cx43 membrane localization, and aggregation within the Golgi. These findings reveal a critical role for Cx43 in epidermal homeostasis, and provide evidence of organ-specific pathobiology resulting from different mutations within GJA1.Journal of Investigative Dermatology accepted article preview online, 14 November 2014. doi:10.1038/jid.2014.485.
    The Journal of investigative dermatology. 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Capillary malformation-arteriovenous malformation syndrome is an autosomal dominant disorder caused by mutations in the RASA1 gene and characterized by multiple small, round to oval capillary malformations with or without arteriovenous malformations. Ateriovenous malformations occur in up to one-third of patients and may involve the brain and spine. Although making the diagnosis is straightforward in some patients, there are other patients for whom diagnostic criteria may be helpful in their evaluation. Here we review the literature regarding capillary malformation-arteriovenous malformation syndrome, propose diagnostic criteria, and discuss the care of patients with this condition.
    Pediatric Dermatology 05/2013; · 1.04 Impact Factor
  • Journal of the American Academy of Dermatology 12/2012; 67(6):e287-9. · 4.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: EN, epidermal nevi; KEN, keratinocytic epidermal nevi; LOH, loss of heterozygosity; MAPK, mitogen-activated protein kinase; NS, nevus sebaceus
    Journal of Investigative Dermatology 10/2012; · 6.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypertension affects one billion people and is a principal reversible risk factor for cardiovascular disease. Pseudohypoaldosteronism type II (PHAII), a rare Mendelian syndrome featuring hypertension, hyperkalaemia and metabolic acidosis, has revealed previously unrecognized physiology orchestrating the balance between renal salt reabsorption and K(+) and H(+) excretion. Here we used exome sequencing to identify mutations in kelch-like 3 (KLHL3) or cullin 3 (CUL3) in PHAII patients from 41 unrelated families. KLHL3 mutations are either recessive or dominant, whereas CUL3 mutations are dominant and predominantly de novo. CUL3 and BTB-domain-containing kelch proteins such as KLHL3 are components of cullin-RING E3 ligase complexes that ubiquitinate substrates bound to kelch propeller domains. Dominant KLHL3 mutations are clustered in short segments within the kelch propeller and BTB domains implicated in substrate and cullin binding, respectively. Diverse CUL3 mutations all result in skipping of exon 9, producing an in-frame deletion. Because dominant KLHL3 and CUL3 mutations both phenocopy recessive loss-of-function KLHL3 mutations, they may abrogate ubiquitination of KLHL3 substrates. Disease features are reversed by thiazide diuretics, which inhibit the Na-Cl cotransporter in the distal nephron of the kidney; KLHL3 and CUL3 are expressed in this location, suggesting a mechanistic link between KLHL3 and CUL3 mutations, increased Na-Cl reabsorption, and disease pathogenesis. These findings demonstrate the utility of exome sequencing in disease gene identification despite the combined complexities of locus heterogeneity, mixed models of transmission and frequent de novo mutation, and establish a fundamental role for KLHL3 and CUL3 in blood pressure, K(+) and pH homeostasis.
    Nature 02/2012; 482(7383):98-102. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: αβ T-cell repertoire selection is mediated by peptide-MHC complexes presented by thymic epithelial or myeloid cells, and by lipid-CD1 complexes expressed by thymocytes. γδ T-cell repertoire selection, by contrast, is largely unresolved. Mice mutant for Skint-1, a unique Ig superfamily gene, do not develop canonical Vγ5Vδ1(+) dendritic epidermal T cells. This study shows that transgenic Skint-1, across a broad range of expression levels, precisely and selectively determines the Vγ5Vδ1(+) dendritic epidermal T-cell compartment. Skint-1 is expressed by medullary thymic epithelial cells, and unlike lipid-CD1 complexes, must be expressed by stromal cells to function efficiently. Its unusual transmembrane-cytoplasmic regions severely limit cell surface expression, yet increasing this or, conversely, retaining Skint1 intracellularly markedly compromises function. Each Skint1 domain appears nonredundant, including a unique decamer specifying IgV-domain processing. This investigation of Skint-1 biology points to complex events underpinning the positive selection of an intraepithelial γδ repertoire.
    Proceedings of the National Academy of Sciences 02/2011; 108(8):3330-5. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: B cells, alphabeta T cells and gammadelta T cells are conserved lymphocyte subtypes encoding their antigen receptors from somatically rearranged genes. alphabeta T cells undergo positive selection in the thymus by engagement of their T cell receptors (TCRs) with self-peptides presented by major histocompatibility complex molecules. The molecules that select gammadelta T cells are unknown. Vgamma5+Vdelta1+ cells comprise 90% of mouse epidermal gammadelta T cells. By mapping and genetic complementation using a strain showing loss of Vgamma5+Vdelta1+ cells due to a failure of thymic selection, we show that this defect is caused by mutation in Skint1, a newly identified gene expressed in thymus and skin that encodes a protein with immunoglobulin-like and transmembrane domains. Skint1 is the prototypic member of a rapidly evolving family of at least 11 genes in mouse, with greatest similarity to the butyrophilin genes. These findings define a new family of proteins mediating key epithelial-immune interactions.
    Nature Genetics 06/2008; 40(5):656-62. · 35.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Osteoporosis is a major public health problem of largely unknown cause. Loss-of-function mutations in the gene for low-density lipoprotein receptor-related protein 5 (LRP5), which acts in the Wnt signaling pathway, have been shown to cause osteoporosis-pseudoglioma. We performed genetic and biochemical analyses of a kindred with an autosomal dominant syndrome characterized by high bone density, a wide and deep mandible, and torus palatinus. Genetic analysis revealed linkage of the syndrome to chromosome 11q12-13 (odds of linkage, >1 million to 1), an interval that contains LRP5. Affected members of the kindred had a mutation in this gene, with valine substituted for glycine at codon 171 (LRP5V171). This mutation segregated with the trait in the family and was absent in control subjects. The normal glycine lies in a so-called propeller motif that is highly conserved from fruit flies to humans. Markers of bone resorption were normal in the affected subjects, whereas markers of bone formation such as osteocalcin were markedly elevated. Levels of fibronectin, a known target of signaling by Wnt, a developmental protein, were also elevated. In vitro studies showed that the normal inhibition of Wnt signaling by another protein, Dickkopf-1 (Dkk-1), was defective in the presence of LRP5V171 and that this resulted in increased signaling due to unopposed Wnt activity. The LRP5V171 mutation causes high bone density, with a thickened mandible and torus palatinus, by impairing the action of a normal antagonist of the Wnt pathway and thus increasing Wnt signaling. These findings demonstrate the role of altered LRP5 function in high bone mass and point to Dkk as a potential target for the prevention or treatment of osteoporosis.
    New England Journal of Medicine 05/2002; 346(20):1513-21. · 54.42 Impact Factor

Publication Stats

969 Citations
150.18 Total Impact Points

Institutions

  • 2013
    • Yale-New Haven Hospital
      New Haven, Connecticut, United States
  • 2012
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
  • 2002–2012
    • Yale University
      • Department of Genetics
      New Haven, CT, United States