Are you Lois W Muthoga?

Claim your profile

Publications (2)10.15 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infection of the oral mucosa of human immunodeficiency virus type 1 (HIV-1)-infected individuals remains an under-evaluated and somewhat enigmatic process. Nonetheless, it is of profound importance in the ongoing AIDS pandemic, based on its potential as a site of person-to-person transmission of the virus as well as a location of HIV-1 pathogenesis and potential reservoir of disease in the setting of virally suppressive highly active antiretroviral therapy. We utilized molecular and virological techniques to analyze HIV-1 infection of primary human mucosal cells and also evaluated the proapoptotic potential of selected HIV-1 proteins in primary isolated human oral keratinocytes. Primary isolated human oral keratinocytes were plated on 0.4 microM polyethylenetetraphthalate cell culture inserts to form an in vitro oral mucosal layer. The strength of this layer in forming a barrier was determined by measuring trans-epithelial electrical current passage across the monolayer. The oral keratinocyte monolayers had trans-epithelial electrical resistance of approximately 176 to 208 omega. For viral infectivity assays, the macrophage-tropic (R5) HIV-1 strains, YU-2 and ADA, and T-cell-line-tropic (X4), NL4-3 virions, incubated with or without deoxynucleoside triphosphates (dNTPs) and/or the polyamines spermine and spermidine, were used to infect oral keratinocytes. Of importance, polyamines and dNTPs have been shown to enhance natural endogenous reverse transcription (NERT), a step essential for early lentiviral infection, and are abundantly present in human semen. The infectivities of HIV-1 strains YU-2, ADA, and NL4-3 for these primary keratinocytes were dramatically increased by the addition of physiological concentrations of dNTPs, spermine, and spermidine. Binding and viral internalization assay studies showed no differences in these oral mucosal cells, with or without NERT-altering agents. It was also observed that the recombinant, cell-free HIV-1 proteins Nef, Tat, and gp120 (R5) induced apoptosis in primary oral keratinocytes compared with the results seen with nontreated cells or cells treated with glutathione S-transferase protein as a control under similar conditions. Microarray analyses suggested that HIV-1 gp120 and Tat induce apoptosis in primary human oral keratinocytes via the Fas/FasL apoptotic pathway, whereas induction of apoptosis by Nef occurs through both Fas/FasL and mitochondrial apoptotic pathways. Thus, these findings suggest molecular mechanisms by which semen in particular, as well as other bodily fluids such as cervicovaginal secretions, could increase oral transmission of HIV-1 via increasing infectivity in confluent and low-replicating oral keratinocytes. As well, the induction of apoptosis in human oral keratinocytes with relevant HIV-1-specific proteins suggests another potential complementary mechanism by which the oral mucosa barrier may be disrupted during HIV-1 infection in vivo.
    Journal of Virology 08/2005; 79(13):8440-53. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lentiviral protein Nef plays a major role in the pathogenesis of human immunodeficiency virus type I (HIV-1) infection. Although the exact mechanisms of its actions are not fully understood, Nef has been shown to be essential for the maintenance of high-titer viral replication and disease pathogenesis in in vivo models of simian immunodeficiency virus infection of monkeys. Nef has also been suggested to play a pivotal role in the depletion of T cells by promoting apoptosis in bystander cells. In this context, we investigated the ability of extracellular and endogenously expressed HIV-1 Nef to induce apoptosis in primary human brain microvascular endothelial cells (MVECs). Human brain MVECs were exposed to baculovirus-expressed HIV-1 Nef protein, an HIV-1-based vector expressing Nef, spleen necrosis virus (SNV)-Nef virus (i.e., SNV vector expressing HIV-1 Nef as a transgene), and the HIV-1 strain ADA and its Nef deletion mutant, ADADeltaNef. We observed that ADA Nef, the HIV-1 vector expressing Nef, and SNV-Nef were able to induce apoptosis in a dose-dependent manner. The mutant virus with a deletion in Nef was able to induce apoptosis in MVECs to modest levels, but the effects were not as pronounced as with the wild-type HIV-1 strain, ADA, the HIV-1-based vector expressing Nef, or SNV-Nef viruses. We also demonstrated that relatively high concentrations of exogenous HIV-1 Nef protein were able to induce apoptosis in MVECs. Gene microarray analyses showed increases in the expression of several specific proapoptotic genes. Western blot analyses revealed that the various caspases involved with Nef-induced apoptosis are processed into cleavage products, which occur only during programmed cell death. The results of this study demonstrate that Nef likely contributes to the neuroinvasion and neuropathogenesis of HIV-1, through its effects on select cellular processes, including various apoptotic cascades.
    Journal of Virology 05/2005; 79(7):4257-69. · 5.08 Impact Factor