Laurie H L Sellings

University of Toronto, Toronto, Ontario, Canada

Are you Laurie H L Sellings?

Claim your profile

Publications (13)52.49 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Signaling at nicotinic acetylcholine receptors in Caenorhabditis elegans controls many behaviors, including egg-laying and locomotor activity. Here, we show that C. elegans approaches a point source of nicotine in a time-, concentration- and age-dependent manner. Additionally, nicotine paired with butanone under starvation conditions prevented the reduced approach to butanone that is observed when butanone is paired with starvation alone and pairing with nicotine generates a preference for the tastes of either sodium or chloride over baseline. These results suggest nicotine acts as a rewarding substance in C. elegans. Furthermore, the nicotinic receptor antagonist mecamylamine, the smoking cessation pharmacotherapy varenicline, mutation of the dop-1 and dop-2 dopamine receptors, and mutations of either acr-5 or acr-15, two nicotinic receptor subunit genes with sequence homology to the mammalian α7 subunit, all reduced the nicotine approach behavior. These two mutants also were defective at associating the presence of nicotine with butanone under starvation conditions and acr-5 mutation could obviate the effect of pairing nicotine with salts. Furthermore, the approach deficit in acr-15 mutants was rescued by selective re-expression in a subset of neurons, but not in muscle. Caenorhabditis elegans may therefore serve as a useful model organism for nicotine-motivated behaviors that could aid in the identification of novel nicotine motivational molecular pathways and consequently the development of novel cessation aids.
    European Journal of Neuroscience 01/2013; · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many organisms enter quiescence in response to adverse environmental factors. Here, we show that L1 stage C. elegans entered a quiescent state after 3hours exposure to diacetyl in which movement and growth stopped for hours to days after odorant removal. Entry into quiescence was dependent on neurons affected by the osm-3 mutation, and by AWA neurons. Conversely, AWB/AWC neurons, the guanylyl cyclase ODR-1, and the TRPV-channel subunit OCR-2 inhibited entry into L1 arrest. This quiescent behavior represents an alternative use of olfactory signaling pathways besides approach or avoidance, and is a novel model in which to characterize genes implicated in quiescence.
    Behavioural brain research 12/2010; 214(1):12-7. · 3.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Caffeine is widely consumed throughout the world, but little is known about the mechanisms underlying its rewarding and aversive properties. We show that pharmacological antagonism of dopamine not only blocks conditioned place aversion to caffeine, but also reveals dopamine blockade-induced conditioned place preferences. These aversive effects are mediated by the dopamine D(2) receptor, as knockout mice showed conditioned place preferences in response to doses of caffeine that C57Bl/6 mice found aversive. Furthermore, these aversive responses appear to be centrally mediated, as a quaternary analog of caffeine failed to produce conditioned place aversion. Although the adenosine A(2A) receptor is important for caffeine's physiological effects, this receptor seems only to modulate the appetitive and aversive effects of caffeine. A(2A) receptor knockout mice showed stronger dopamine-dependent aversive responses to caffeine than did C57Bl/6 mice, which partially obscured the dopamine-independent and A(2A) receptor-independent preferences. Additionally, the A(1) receptor, alone or in combination with the A(2A) receptor, does not seem to be important for caffeine's rewarding or aversive effects. Finally, excitotoxic lesions of the tegmental pedunculopontine nucleus revealed that this brain region is not involved in dopamine blockade-induced caffeine reward. These data provide surprising new information on the mechanism of action of caffeine, indicating that adenosine receptors do not mediate caffeine's appetitive and aversive effects. We show that caffeine has an atypical reward mechanism, independent of the dopaminergic system and the tegmental pedunculopontine nucleus, and provide additional evidence in support of a role for the dopaminergic system in aversive learning.
    European Journal of Neuroscience 07/2010; 32(1):143-54. · 3.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insulin signaling plays a prominent role in regulation of dauer formation and longevity in Caenorhabditis elegans. Here, we show that insulin signaling also is required in benzaldehyde-starvation associative plasticity, in which worms pre-exposed to the odor attractant benzaldehyde in the absence of food subsequently demonstrate a conditioned aversion response toward the odorant. Animals with mutations in insulin-related 1 (ins-1), abnormal dauer formation 2 (daf-2), and aging alteration 1 (age-1), which encode the homolog of human insulin, insulin/IGF-1 receptor, and PIP3 kinase, respectively, demonstrated significant deficits in benzaldehyde-starvation associative plasticity. Using a conditional allele, we show that the behavioral roles of DAF-2 signaling in associative plasticity can be dissociated, with DAF-2 signaling playing a more significant role in the memory retrieval than in memory acquisition. We propose DAF-2 signaling acts as a learning-specific starvation signal in the memory acquisition phase of benzaldehyde-starvation associative plasticity but functions to switch benzaldehyde-sensing amphid wing C neurons into an avoidance signaling mode during memory retrieval.
    Journal of Neuroscience 06/2010; 30(23):8001-11. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mesolimbic dopamine (DA) system is implicated in the processing of the positive reinforcing effect of all drugs of abuse, including nicotine. It has been suggested that the dopaminergic system is also involved in the aversive motivational response to drug withdrawal, particularly for opiates, however, the role for dopaminergic signaling in the processing of the negative motivational properties of nicotine withdrawal is largely unknown. We hypothesized that signaling at dopaminergic receptors mediates chronic nicotine withdrawal aversions and that dopaminergic signaling would differentially mediate acute vs dependent nicotine motivation. We report that nicotine-dependent rats and mice showed conditioned place aversions to an environment paired with abstinence from chronic nicotine that were blocked by the DA receptor antagonist alpha-flupenthixol (alpha-flu) and in DA D(2) receptor knockout mice. Conversely, alpha-flu pretreatment had no effect on preferences for an environment paired with abstinence from acute nicotine. Taken together, these results suggest that dopaminergic signaling is necessary for the opponent motivational response to nicotine in dependent, but not non-dependent, rodents. Further, signaling at the DA D(2) receptor is critical in mediating withdrawal aversions in nicotine-dependent animals. We suggest that the alleviation of nicotine withdrawal primarily may be driving nicotine motivation in dependent animals.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 03/2010; 35(4):943-54. · 8.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dominance hierarchies within social groups determine resource distribution. Resources, such as food and access to mating partners, can act as reinforcers. The present study examined the effect of social rank on access to wheel running-a reinforcing behavior performed by laboratory animals. Mice were identified as dominant or subordinate and given access to a running wheel access under solitary or social conditions. In the solitary condition, subordinate and dominant mice spent equal amounts of time on the running wheel. In the social condition, when one wheel was present, subordinate mice spent less time on the wheel than did dominant mice. Conversely, when two wheels were present, subordinates spent more time on the wheel than did dominant mice. When mice were given 24h access to one running wheel in the social condition, dominant mice ran more than subordinates during the dark cycle. Subordinate mice did not compensate for the lack of running wheel access by schedule shifting. These results suggest that social rank influences access to reinforcers by behavioral interference rather than by social inhibition.
    Neuroscience Letters 08/2009; 457(3):137-40. · 2.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The authors investigated the effect of the opioid antagonist naloxone on wheel-running behavior in Balb/c mice. Naloxone delayed the acquisition of wheel-running behavior, but did not reduce the expression of this behavior once acquired. Delayed acquisition was not likely a result of reduced locomotor activity, as naloxone-treated mice did not exhibit reduced wheel running after the behavior was acquired, and they performed normally on the rotarod test. However, naloxone-blocked conditioned place preference for a novel compartment paired previously with wheel running, suggesting that naloxone may delay wheel-running acquisition by blocking the rewarding or reinforcing effects of the behavior. These results suggest that the endogenous opioid system mediates the initial reinforcing effects of wheel running that are important in acquisition of the behavior.
    Journal of Motor Behavior 12/2008; 40(6):587-93. · 1.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The neurotoxin 6-hydroxydopamine has been widely used to model aspects of Parkinson's disease in rodents, but the mechanisms underlying toxin-induced dopaminergic degeneration and functional impairment have not been fully elucidated. The main aim of the present study was to assess a possible role for calpains in neurochemical and behavioral deficits following unilateral infusion of intrastriatal 6-hydroxydopamine in adult rats. Toxin administration produced a profound dopaminergic denervation, as indicated by a 90-95% reduction in dopamine transporter radiolabeling measured in the caudate-putamen at 2 weeks post-lesion. Treatment with 6-hydroxydopamine also resulted in calpain activation in both caudate-putamen and substantia nigra, as measured by the appearance of calpain-specific spectrin breakdown products. Calpain activation peaked at 24 h after 6-hydroxydopamine infusion and remained elevated at later time points. In contrast, caspase-3-mediated spectrin cleavage subsided within 48 h in both brain areas. In a subsequent experiment, calpain inhibition was achieved by intrastriatal infusion of an adenovirus expressing the endogenous calpain inhibitor, calpastatin. Calpastatin delivery abolished the lesion-induced calpain-mediated spectrin cleavage and alleviated forelimb asymmetries resulting from unilateral intrastriatal 6-hydroxydopamine. Unexpectedly, dopamine transporter and tyrosine hydroxylase labeling revealed significant neuroprotection, not in the nigrostriatal pathway but rather in the ventral tegmental area. These findings support a role for calpain activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. However, after near-total dopaminergic depletion, the primary benefit of calpain inhibition may not occur within the nigrostriatal dopaminergic pathway itself.
    Neuroscience 12/2008; 158(2):558-69. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Forebrain dopamine plays a critical role in motivated behavior. According to the classic view, mesolimbic dopamine selectively guides behavior motivated by positive reinforcers. However, this has been challenged in favor of a wider role encompassing aversively motivated behavior. This controversy is particularly striking in the case of nicotine, with opposing claims that either the rewarding or the aversive effect of nicotine is critically dependent on mesolimbic dopamine transmission. In the present study, the effects of 6-hydroxydopamine lesions of nucleus accumbens core vs. medial shell on intravenous nicotine conditioned place preference and conditioned taste aversion were examined in male adult rats. Dopaminergic denervation in accumbens medial shell was associated with decreased nicotine conditioned place preference. Conversely, denervation in accumbens core was associated with an increase in conditioned place preference. In addition, dopaminergic denervation of accumbens core but not medial shell abolished conditioned taste aversion for nicotine. We conclude that nucleus accumbens core and medial shell dopaminergic innervation exert segregated effects on rewarding and aversive effects of nicotine. More generally, our findings indicate that dopaminergic transmission may mediate or enable opposing motivational processes within functionally distinct domains of the accumbens.
    European Journal of Neuroscience 08/2008; 28(2):342-52. · 3.75 Impact Factor
  • L H L Sellings, L E McQuade, P B S Clarke
    [Show abstract] [Hide abstract]
    ABSTRACT: In general, psychostimulants are thought to exert rewarding and locomotor stimulating effects via increased dopamine transmission in the ventral striatum. However, little is known about the mechanisms underlying the effects of the stimulant drug methylphenidate. The present study examined the putative role of dopaminergic transmission in i.v. methylphenidate reward as measured by conditioned place preference. Rats were shown to exhibit conditioned place preference for i.v. methylphenidate (5 mg/kg, not 2 mg/kg). Administration of the dopamine receptor antagonist cis-flupenthixol (0.1-0.8 mg/kg i.p.), either during conditioning or on test day, dose-dependently attenuated the magnitude of the conditioned place preference. Finally, we examined the effects of bilateral 6-hydroxydopamine lesions of nucleus accumbens core, medial shell or anteromedial olfactory tubercle on the rewarding and locomotor stimulant effects of methylphenidate. Residual dopamine innervation, as assessed by radioligand binding to the dopamine transporter, revealed a significant association between core dopamine innervation and the locomotor stimulant effect of methylphenidate. However, neither core nor medial shell dopamine innervation was related to conditioned place preference magnitude. Instead, conditioned place preference magnitude was associated with dopamine innervation in the anteromedial olfactory tubercle. These results establish a role for dopaminergic transmission in both i.v. methylphenidate conditioned place preference and locomotor stimulation. As well, they suggest that different ventral striatal subregions mediate the rewarding (anteromedial olfactory tubercle) and locomotor stimulant (accumbens core) effects of methylphenidate.
    Neuroscience 10/2006; 141(3):1457-68. · 3.12 Impact Factor
  • Laurie H L Sellings, Lindsey E McQuade, Paul B S Clarke
    [Show abstract] [Hide abstract]
    ABSTRACT: Considerable evidence suggests that psychostimulants can exert rewarding and locomotor-stimulating effects via increased dopamine transmission in the ventral striatum. However, the relative contributions of ventral striatal subregions to each of these effects have been little investigated. In the present study, we examined the contribution of different ventral striatal sites to the rewarding and locomotor-activating effects of cocaine. Initially, the effects of bilateral 6-hydroxydopamine lesions of the nucleus accumbens core or medial shell on cocaine-induced locomotor stimulation (0.5-1.5 mg/kg i.v. or 5-20 mg/kg i.p.) and conditioned place preference (0.5 mg/kg i.v. or 10 mg/kg i.p.) were examined. In a subsequent study, we investigated the effects of olfactory tubercle versus medial shell lesions on cocaine-conditioned place preference and locomotor activity (0.5 mg/kg i.v.). Dopaminergic lesion extent was quantified by radioligand binding to the dopamine transporter. Multiple linear regression was used to identify associations between behavioral effects and residual dopamine innervation in ventral striatal subregions. On this basis, the accumbens core was associated with the locomotor stimulant effects of i.v. and i.p. cocaine. In contrast, the medial shell was associated with the rewarding effect of i.v. cocaine, but not of i.p. cocaine. Finally, the olfactory tubercle was identified as an additional site contributing to conditioned place preference produced by i.v. cocaine. Overall, these findings provide additional evidence that the locomotor stimulant and rewarding effects of systemically administered psychomotor stimulant drugs are segregated within the ventral striatum.
    Journal of Pharmacology and Experimental Therapeutics 07/2006; 317(3):1178-87. · 3.89 Impact Factor
  • Laurie H L Sellings, Paul B S Clarke
    [Show abstract] [Hide abstract]
    ABSTRACT: Environmental cues associated with drug experiences appear to play a critical role in drug dependence. We have previously reported that dopamine-depleting lesions of the nucleus accumbens medial shell inhibit amphetamine-conditioned place preference. Here, we examined the effects of analogous lesions on amphetamine-conditioned locomotor activity. Bilateral core, but not medial shell, lesions attenuated unconditioned locomotion and abolished the conditioned locomotor response. Taken with our previous results, these findings confirm a role for accumbens core in amphetamine-induced locomotor activity and suggest that the role of medial shell DA transmission in conditioned place preference is related to reward processing rather than conditioning in general.
    Synapse 06/2006; 59(6):374-7. · 2.31 Impact Factor
  • Laurie H L Sellings, Paul B S Clarke
    [Show abstract] [Hide abstract]
    ABSTRACT: Convergent evidence suggests that amphetamine (AMPH) exerts its rewarding and locomotor stimulating effects via release of dopamine in the nucleus accumbens. However, there is no consensus as to the relative contributions of core and medial shell subregions to these effects. Moreover, the literature is based primarily on intracranial administration, which cannot fully mimic the drug distribution achieved by systemic administration. In the present study, the effects of bilateral 6-hydroxydopamine lesions of the accumbens core or medial shell on rewarding and locomotor stimulating effects of systemically administered amphetamine (0.75 mg/kg, i.p.) were examined in a conditioned place preference (CPP) procedure relying solely on tactile cues (floor texture). Residual dopamine innervation was quantified by [125I]-RTI-55 binding to the dopamine transporter. When lesions were performed before the conditioning phase, AMPH-induced locomotor stimulation and CPP magnitude were positively correlated with residual dopamine transporter binding in core and medial shell, respectively. Medial shell lesions did not affect morphine CPP, arguing that a sensory or mnemonic deficit was not responsible for the lesion-induced reduction in AMPH CPP. Medial shell lesions performed between the conditioning phase and the test day reduced the expression of amphetamine CPP. These results suggest that after systemic amphetamine administration, rewarding and locomotor stimulating effects of the drug are anatomically dissociated within the nucleus accumbens: the medial shell contributes to rewarding effects, whereas the core contributes to behavioral activation.
    Journal of Neuroscience 08/2003; 23(15):6295-303. · 6.91 Impact Factor