Are you L Kathryn Durham?

Claim your profile

Publications (7)23.6 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: To better understand the role of cholesteryl ester transfer protein (CETP) in cardiovascular disease, nine polymorphisms spanning the gene from the upstream promoter region to beyond the 3'UTR were genotyped in 2553 individuals from multiple ethnic groups and with different cardiovascular disease profiles. The frequency of four of these SNPs varied by 40-300% between Caucasians and African Americans. SNPs in each ethnic group fell into two haploblocks with significant linkage disequilibrium within each block. SNPs in the 5' haploblock were significantly associated with HDL cholesterol while SNPs in the 3' haploblock were, at best, only weakly associated with HDL-C. One SNP in the 3' haploblock (rs1800774 in intron 12) was highly associated with history of myocardial infarction even though it was not associated with HDL-C. This association was driven by the effect in Caucasian women where 11.9% of the women with no history of MI are homozygous for the less common allele while 23.7% of those with a history of MI share this genotype. In addition, this SNP was highly associated with BMI among Caucasians (p < 0.0001). The association of HDL-C with CETP genotype was found to be independent of smoking or alcohol consumption. These results replicate some earlier findings and also help to explain some of the apparent contradictions in the literature surrounding the role of CETP in modulating HDL-C and cardiovascular disease.
    Atherosclerosis 08/2005; 181(1):45-53. · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cholesteryl ester transfer protein (CETP) is an important modulator of high density lipoprotein cholesterol in humans and thus considered to be a therapeutic target for preventing cardiovascular disease. The gene encoding CETP has been shown to be highly variable, with multiple single nucleotide polymorphisms responsible for altering both its transcription and sequence. Examining nine missense variants of CETP, we found some had significant associations with CETP mass and high density lipoprotein cholesterol levels. Two variants, Pro-373 and Gln-451, appear to be more stable in vivo, an observation mirrored by partial proteolysis studies performed in vitro. Because these naturally occurring variant proteins are potentially present in clinical populations that will be treated with CETP inhibitors, all commonly occurring haplotypes were tested to determine whether the proteins they encode could be inhibited by torcetrapib, a compound currently in clinical trials in combination with atorvastatin. Torcetrapib behaved similarly with all variants, with no significant differences in inhibition.
    Journal of Biological Chemistry 05/2005; 280(15):14918-22. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Association studies are used to identify genetic determinants of complex human traits of medical interest. With the large number of validated single nucleotide polymorphisms (SNPs) currently available, two limiting factors in association studies are genotyping capability and costs. Pooled DNA genotyping has been proposed as an efficient means of screening SNPs for allele frequency differences in case-control studies and for prioritising them for subsequent individual genotyping analysis. Here, we apply quantitative pooled genotyping followed by individual genotyping and replication to identify associations with human serum high-density lipoprotein (HDL) cholesterol levels. The DNA from individuals with low and high HDL cholesterol levels was pooled separately, each pool was amplified by polymerase chain reaction in triplicate and each amplified product was separately hybridised to a high-density oligonucleotide array. Allele frequency differences between case and control groups with low and high HDL cholesterol levels were estimated for 7,283 SNPs distributed across 71 candidate gene regions spanning a total of 17.1 megabases. A novel method was developed to take advantage of independently derived haplotype map information to improve the pooled estimates of allele frequency differences. A subset of SNPs with the largest estimated allele frequency differences between low and high HDL cholesterol groups was chosen for individual genotyping in the study population, as well as in a separate replication population. Four SNPs in a single haplotype block within the cholesteryl ester transfer protein (CETP) gene interval were significantly associated with HDL cholesterol levels in both populations. Our study is among the first to demonstrate the application of pooled genotyping followed by confirmation with individual genotyping to identify genetic determinants of a complex trait.
    Human genomics 12/2004; 1(6):421-34.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A common polymorphism (5HTTLPR) within the promoter region of the serotonin transporter gene (LSC6A4) has been shown to influence response time as well as overall response to selective serotonin reuptake inhibitors (SSRIs) in subjects with major depressive disorder. We hypothesized that a similar effect in response time to sertraline would be observed and that no effect on response time would be seen in a placebo arm. We tested the hypothesis that subjects homozygous for the long allele at the 5HTTLPR polymorphism would respond more rapidly to sertraline than subjects carrying one or two copies of the short allele. HAM-D and CGI-I responses to sertraline and placebo were measured weekly in the context of an 8-week, placebo-controlled study in elderly depressed subjects. Genotyping of the 5HTTLPR polymorphism was performed to test for correlations with response at each week in the sertraline and placebo groups ( n=206). Subjects homozygous for the long allele of 5HTTLPR showed a significant increase in response at week 1 and week 2, as assessed by the CGI-I scale compared with subjects carrying one or two copies of the short allele ( P=0.01 at both weeks). No significant difference was observed in the placebo group. These results suggest that genetic variation in the serotonin transporter gene effects the response time to sertraline and provides complementing evidence to previous reports that this polymorphism affects response time to other SSRIs.
    Psychopharmacology 09/2004; 174(4):525-9. · 4.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Significant variation in interleukin-1 beta (IL-1 beta) protein secretion between subjects has been observed when using a lipopolysaccharide (LPS)/ATP-mediated ex vivo blood stimulation assay. To explore the potential relationships between genetic polymorphisms in the IL1B cytokine gene and cellular responses to inflammatory stimuli such as LPS, we investigated the hypothesis that polymorphisms within the promoter and exon 5 of the IL1B gene contribute to the observed differences in IL-1 beta protein secretion. The IL1B gene polymorphisms C-511T, T-31C, and C3954T were tested for association with LPS-induced secretion of IL-1 beta protein as measured by an ex vivo blood stimulation assay. Samples from 2 independent study populations (n = 31 and n = 25) were available for use in the ex vivo assay after consent was obtained to analyze the DNA. A specific haplotype, composed of the T allele at -511 and the C allele at -31, was significantly associated with a 2-3-fold increase in LPS-induced IL-1 beta protein secretion. This association was observed in both of the independent study populations (P = 0.0084 and P = 0.0017). These data suggest that polymorphisms within the promoter region of the IL1B gene contribute to observed differences in LPS-induced IL-1 beta protein secretion.
    Arthritis & Rheumatology 07/2004; 50(6):1976-83. · 7.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cholesteryl ester transfer protein (CETP) gene has been implicated in the variation of HDL levels but most studies have focused on only one or a few genetic variations. In order to properly understand the role of CETP in determining phenotype, it is necessary to examine the entire gene and all its common polymorphisms. The coding regions, adjacent introns, and proximal 5' and 3' regions were resequenced from an ethnically diverse population. Novel and previously known polymorphisms were then characterized and associations with HDL and CETP mass levels determined. The polymorphism most highly associated with CETP was 629 bp upstream of the transcription start site while the polymorphism most highly associated with HDL was a VNTR 1946 bp upstream of the transcription start site. Genetic variation in the CETP gene is associated with protective HDL levels. The ethnic diversity of some SNPs and complex interplay among them dictate careful analysis of the whole gene prior to conclusions about the role of individual polymorphisms.
    Atherosclerosis 05/2003; 167(2):195-204. · 3.71 Impact Factor
  • Atherosclerosis Supplements - ATHEROSCLER SUPPL. 01/2003; 4(2):301-301.