Kenneth K W To

The Chinese University of Hong Kong, Hong Kong, Hong Kong

Are you Kenneth K W To?

Claim your profile

Publications (55)256.47 Total impact

  • Kenneth K W To · W W Leung · Simon S M Ng
    [Show abstract] [Hide abstract]
    ABSTRACT: Colorectal cancer (CRC) is a major cause of mortality and morbidity worldwide. While surgery remains the mainstay of treatment for early stage CRC, adjuvant chemotherapy is usually given to reduce the risk of recurrence after colectomy. Overexpression of a multidrug resistance (MDR) transporter ABCG2 in vitro has been shown to cause resistance to 5-fluorouracil (5-FU) and irinotecan, components of the most commonly adopted regimens for treating CRC. Both anticancer drugs are known ABCG2 substrates. An effective way to predict drug response may provide guidance for better cancer treatment. We investigated the effect of ABCG2 dysregulation on cancer cell sensitivity to chemotherapy using pairs of snap-frozen paraffin-embedded archival blocks of human colorectal cancer tissues and their matched non-cancerous colon tissues from CRC patients. In CRC patients responding to chemotherapy, the tumors were found to have remarkable lower ABCG2 expression than the adjacent normal colon tissues. On the contrary, the tumors from patients not responding to 5-FU-based chemotherapy have higher ABCG2 level than the adjacent normal tissues. The high ABCG2 expression in the tumor is associated with the concomitant overexpression of the mRNA binding protein HuR but a low expression of miR-519c because miR-519c is known to target both ABCG2 and HuR. Further investigation in CRC cell lines revealed that the ABCG2 overexpression was caused by an interplay between miR-519c, HuR and the length of the 3'untranslated region (UTR) of ABCG2. These parameters may be further developed as useful biomarkers to predict patient response to adjuvant chemotherapy. Besides being predictive biomarkers, the microRNAs and mRNA binding protein identified may also be potential drug targets for modulating ABCG2 to combat resistance in CRC chemotherapy.
    Experimental Cell Research 09/2015; DOI:10.1016/j.yexcr.2015.09.011 · 3.25 Impact Factor
  • Xu-Qin Li · Lin Wang · Yan Lei · Tao Hu · Fei-Long Zhang · Chi-Hin Cho · Kenneth K.W. To
    [Show abstract] [Hide abstract]
    ABSTRACT: With an aim to generate non-toxic, specific and highly potent multidrug resistance (MDR) modulators, a novel series of anthranilic acid amide-substituted tariquidar derivatives were synthesized. The new compounds were evaluated for their cytotoxicity toward normal human colon fibroblasts (CCD18-Co), human gastric epithelial cell line (HFE) and primary rat liver cells, and for their ability to inhibit P-gp/BCRP-mediated drug efflux and reversal of P-gp and BCRP-mediated MDR in parental and drug-resistant cancer cell lines (LCC6 MDR1, MCF-7 FLV1000, R-HepG2, SW620-Ad300). While tariquidar is highly toxic to normal cells, the new derivatives exhibited much lower or negligible cytotoxicity. Some of the new tariquidar derivatives inhibited both P-gp and BCRP-mediated drug efflux whereas a few of them bearing a sulfonamide functional group (1, 5, and 16) are specific to P-gp. The new compounds were also found to potentiate the anticancer activity of the transporter substrate anticancer drugs in the corresponding transporter-overexpressing cell lines. The extent of resistance reversal was found to be consistent with the transporter inhibitory effect of the new derivatives. To further understand the mechanism of P-gp and BCRP inhibition, the tariquidar derivatives were found to interact with the transporters using an antibody-based UIC2 or 5D3 shift assay. Moreover, the transporters-inhibiting derivatives were found to modulate the ATPase activities of the two MDR transporters. Our data thus advocate further development of the new compounds for the circumvention of MDR.
    European Journal of Medicinal Chemistry 08/2015; 101:560-72. DOI:10.1016/j.ejmech.2015.06.049 · 3.45 Impact Factor
  • Kenneth K.W. To · Daniel C Poon · Yuming Wei · Fang Wang · Ge Lin · Li-Wu Fu
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer microenvironment is characterized by significantly lower oxygen concentration. This hypoxic condition is known to reduce drug responsiveness to cancer chemotherapy via multiple mechanisms, among which the upregulation of the ATP-binding cassette (ABC) efflux transporters confers resistance to a wide variety of structurally unrelated anticancer drugs. Vatalanib (PTK787/ZK22584) is a multitargeted tyrosine kinase inhibitor for all isoforms of VEGFR, PDGFR and c-Kit, which exhibit potent anticancer activity in vitro and in vivo. We investigated the potentiation effect of vatalanib on the anticancer activity of conventional cytotoxic drugs in colon cancer cell lines under both normoxic and hypoxic conditions. Mechanistically, vatalanib was found to inhibit ABCG2 and ABCB1 efflux activity, presumably by acting as a competitive inhibitor and interfering with their ATPase activity. Under hypoxic growth condition, ABCG2 and ABCB1-overexpressing cells sorted out by FACS technique as side population (SP) were found to be significantly more responsive to SN-38 (ABCG2 and ABCB1 substrate anticancer drug) in the presence of vatalanib. The anchorage independent soft agar colony formation capacity of the SP cells was remarkably reduced upon treatment with a combination of SN-38 and vatalanib, compared to SN-38 alone. However, vatalanib, at concentrations that produced the circumvention of the transporters-mediated resistance, did not appreciably alter ABCG2/ABCB1 mRNA or protein expression levels or the phosphorylation of Akt and extracellular signal-regulated kinase (ERK1/2). Our study thus advocates the further investigation of vatalanib for use in combination chemotherapy to eradicate drug-resistant cancer cells under hypoxia.
    Biochemical pharmacology 08/2015; 97(1):27-37. DOI:10.1016/j.bcp.2015.06.034 · 5.01 Impact Factor
  • Kenneth K. To · Daniel C. Poon · Yuming Wei · Fang Wang · Ge Lin · Li-wu Fu
    Cancer Research 08/2015; 75(15 Supplement):4417-4417. DOI:10.1158/1538-7445.AM2015-4417 · 9.33 Impact Factor
  • Kenneth K.W. To · Wing Wah Leung · Simon S.M. Ng
    Cancer Research 08/2015; 75(15 Supplement):LB-292-LB-292. DOI:10.1158/1538-7445.AM2015-LB-292 · 9.33 Impact Factor
  • Kenneth K W To · Daniel C Poon · Yuming Wei · Fang Wang · Ge Lin · Liwu Fu
    [Show abstract] [Hide abstract]
    ABSTRACT: Background and purpose: Pelitinib is a potent irreversible EGFR TK inhibitor currently in clinical trials for the treatment of lung cancer. Hyperthermia has been applied concomitantly with chemotherapy and radiotherapy to enhance treatment outcome. In this study, we investigated the ability of the combination of pelitinib with other conventional anticancer drugs to specifically target cancer cells with up-regulated efflux transporters ABCB1/ABCG2 after hyperthermia as a novel way to eradicate the cancer stem-like cells responsible for cancer recurrence. Experimental approach: Alterations in intracellular topotecan accumulation, the efflux of fluorescent probe substrates, expression and ATPase activity of ABCB1/ABCG2 and tumoursphere formation capacity of side population (SP) cells sorted after hyperthermia were examined to elucidate the mechanism of pelitinib-induced chemosensitization. Key results: While pelitinib did not modulate ABCB1/ABCG2 expressions, the combination of pelitinib with transporter substrate anticancer drugs induced more marked apoptosis, specifically in cells exposed to hyperthermia. The flow cytometric assay showed that both ABCB1- and ABCG2-mediated drug effluxes were significantly inhibited by pelitinib in a concentration-dependent manner. The inhibition kinetics suggested that pelitinib is a competitive inhibitor of ABCB1/ABCG2, which is consistent with its ability to stimulate their ATPase activity. SP cells sorted after hyperthermia were found to be more resistant to anticancer drugs, presumably due to the up-regulation of ABCB1 and ABCG2. Importantly, pelitinib specifically enhanced the chemosensitivity but reduced the tumoursphere formation capacity of these SP cells. Conclusions and implications: This study demonstrated a novel approach, exploiting drug resistance, to selectively kill cancer stem-like cells after hyperthermia.
    British Journal of Pharmacology 07/2015; 172(16):n/a-n/a. DOI:10.1111/bph.13189 · 4.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multidrug resistance (MDR) develops in nearly all patients with colon cancer. The reversal of MDR plays an important role in the success of colon cancer chemotherapy. One of the commonest mechanisms conferring MDR is the suppression of apoptosis in cancer cells. This study investigated the sensitivity of cryptotanshinone (CTS) and dihydrotanshinone (DTS), two lipophilic tanshinones from a traditional Chinese medicine Salvia miltiorrhiza, in apoptosis-resistant colon cancer cells. Cell viability was measured by MTT assay. Cell cycle distribution and apoptosis were determined by flow cytometry. Protein levels were analyzed by western blot analysis. The formation of acidic vesicular organelles was visualized by acridine orange staining. Experimental results showed that multidrug-resistant colon cancer cells SW620 Ad300 were sensitive to both CTS and DTS in terms of cell death, but with less induction of apoptosis when compared with the parental cells SW620, suggesting that other types of cell death such as autophagy could occur. Indeed, the two tanshinones induced more LC3B-II accumulation in SW620 Ad300 cells with increased autophagic flux. More importantly, cell viability was increased after autophagy inhibition, indicating that autophagy induced by the two tanshinones was pro-cell death. Besides, the cytotoxic actions of the two tanshinones were p53-independent, which could be useful in inhibiting the growth of apoptosis-resistant cancer cells with p53 defects. The current findings strongly indicate that both CTS and DTS could inhibit the growth of apoptosis-resistant colon cancer cells through induction of autophagic cell death and p53-independent cytotoxicity. They are promising candidates to be further developed as therapeutic agents in the adjuvant therapy for colon cancer, especially for the apoptosis-resistant cancer types. Copyright © 2015 Elsevier GmbH. All rights reserved.
    Phytomedicine: international journal of phytotherapy and phytopharmacology 05/2015; 22(5):536-44. DOI:10.1016/j.phymed.2015.03.010 · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multidrug resistance (MDR) to chemotherapeutic drugs is a formidable barrier to the success of cancer chemotherapy. Expressions of ATP-binding cassette (ABC) transporters contribute to clinical MDR phenotype. In this study, we found that afatinib, a small molecule tyrosine kinase inhibitor (TKI) targeting EGFR, HER-2 and HER-4, reversed the chemoresistance mediated by ABCG2 in vitro, but had no effect on that mediated by multidrug resistance protein ABCB1 and ABCC1. In addition, afatinib, in combination with topotecan, significantly inhibited the growth of ABCG2- overexpressing cell xenograft tumors in vivo. Mechanistic investigations exhibited that afatinib significantly inhibited ATPase activity of ABCG2 and downregulated expression level of ABCG2, which resulted in the suppression of efflux activity of ABCG2 in parallel to the increase of intracellular accumulation of ABCG2 substrate anticancer agents. Taken together, our findings may provide a new and useful combinational therapeutic strategy of afatinib with chemotherapeutical drug for the patients with ABCG2 overexpressing cancer cells.
    Oncotarget 11/2014; 5(23). DOI:10.18632/oncotarget.2647 · 6.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multidrug resistance (MDR) of cancer cells to a broad spectrum of anticancer drugs is an obstacle to successful chemotherapy. Overexpression of P-glycoprotein (P-gp), an ATP-binding cassette (ABC) membrane transporter, can mediate the efflux of cytotoxic drugs out of cancer cells, leading to MDR and chemotherapy failure. Thus, development of safe and effective P-gp inhibitors plays an important role in circumvention of MDR. This study investigated the reversal of P-gp mediated multidrug resistance in colon cancer cells by five tanshinones including tanshinone I, tanshinone IIA, cryptotanshinone, dihydrotanshinone and miltirone isolated from Salvia miltiorrhiza (Danshen), known to be safe in traditional Chinese medicine.
    Phytomedicine: international journal of phytotherapy and phytopharmacology 09/2014; 21(11):1264-72. DOI:10.1016/j.phymed.2014.06.013 · 3.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The overexpression of ATP-binding cassette (ABC) transporters often leads to the development of multidrug resistance (MDR), which is the major factor contributing to the failure of chemotherapy. The objective of this study was to investigate the enhancement of CEP-33779, a small-molecule inhibitor of Janus kinase 2 (JAK2), on the efficacy of conventional chemotherapeutic agents in MDR cells with overexpression of P-glycoprotein (ABCB1), multidrug resistance-associated protein 1 (ABCC1) and breast cancer resistance protein (ABCG2). Our results showed that CEP-33779, at nontoxic concentrations, significantly sensitized ABCB1 overexpressing MDR cells to its anticancer substrates. CEP-33779 significantly increased intracellular accumulation and decreased the efflux of doxorubicin by inhibiting the ABCB1 transport function. Furthermore, CEP-33779 did not alter the expression of ABCB1 both at protein and mRNA levels but did stimulate the activity of ABCB1 ATPase. CEP-33779 was predicted to bind within the large hydrophobic cavity of homology modeled ABCB1. In addition, the down-regulation of JAK2 by shRNA altered neither the expression of ABCB1 nor the cytotoxic effect of chemotherapeutic agents in ABCB1-overexpressing cells. Significantly, CEP-33779 enhanced the efficacy of vincristine against the ABCB1-overexpressing and drug resistant KBv200 cell xenograft in nude mice. In conclusion, we conclude that CEP-33779 enhances the efficacy of substrate drugs in ABCB1-overexpressing cells by directly inhibiting ABCB1 transport function. The findings encouraged to further study on the combination therapy of CEP-33779 with conventional chemotherapeutic agents in ABCB1 mediated-MDR cancer patients.
    Biochemical pharmacology 07/2014; 91(2). DOI:10.1016/j.bcp.2014.07.008 · 5.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer stem-like cells (CSC) have garnered significant attention as a therapeutic focus, based on evidence they may represent an etiologic root of treatment-resistant cells. Indeed, expression of the multidrug resistance protein ABCG2 confers chemoresistance to CSC where it serves as a potential biomarker and therapeutic target. Here we show that afatinib, a small molecule inhibitor of the tyrosine kinases EGFR, HER-2 and HER-4, preferentially eliminated side population (SP) cells with CSC character, in both cell lines or patient-derived leukemia cells, by decreasing ABCG2 expression. In these cells afatinib also acted in parallel to suppress self-renewal capacity and tumorigenicity. Combining afatinib with the DNA damaging drug topotecan enhanced the antitumor effect of topotecan in vitro and in vivo. Mechanistic investigations suggested that ABCG2 suppression by afatinib did not proceed by proteolysis through the ubiquitin-dependent proteosome, lysosome or calpain. Instead, we found that afatinib increased DNA methyltransferase activity, thereby leading to methylation of the ABCG2 promoter and to a decrease in ABCG2 message level. Taken together, our results advocate the use of afatinib in combination with conventional chemotherapeutic drugs to improve efficacy by improving CSC eradication.
    Cancer Research 06/2014; 74(16). DOI:10.1158/0008-5472.CAN-13-3553 · 9.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multidrug resistance (MDR) mediated by ATP-binding cassette (ABC) transporters through efflux of antineoplastic agents from cancer cells is a major obstacle to successful cancer chemotherapy. The inhibition of these ABC transporters is thus a logical approach to circumvent MDR. There has been intensive research effort to design and develop novel inhibitors for the ABC transporters to achieve this goal. In the present study, we evaluated the ability of UMMS-4 to modulate P-glycoprotein (P-gp/ABCB1)-, breast cancer resistance protein (BCRP/ABCG2)- and multidrug resistance protein (MRP1/ABCC1)-mediated MDR in cancer cells. Our findings showed that UMMS-4, at non-cytotoxic concentrations, apparently circumvents resistance to ABCB1 substrate anticancer drugs in ABCB1-overexpressing cells. When used at a concentration of 20 μmol/L, UMMS-4 produced a 17.53-fold reversal of MDR, but showed no effect on the sensitivity of drug-sensitive parental cells. UMMS-4, however, did not significantly alter the sensitivity of non-ABCB1 substrates in all cells and was unable to reverse ABCG2- and ABCC1-mediated MDR. Additionally, UMMS-4 profoundly inhibited the transport of rhodamine 123 (Rho 123) and doxorubicin (Dox) by the ABCB1 transporter. Furthermore, UMMS-4 did not alter the expression of ABCB1 at the mRNA and protein levels. In addition, the results of ATPase assays showed that UMMS-4 stimulated the ATPase activity of ABCB1. Taken together, we conclude that UMMS-4 antagonizes ABCB1-mediated MDR in cancer cells through direct inhibition of the drug efflux function of ABCB1. These findings may be useful for the development of safer and more effective MDR modulator.
    American Journal of Cancer Research 03/2014; 4(2):148-60. · 4.17 Impact Factor
  • Kenneth K W To · Brian Tomlinson
    [Show abstract] [Hide abstract]
    ABSTRACT: Multidrug resistance (MDR), usually mediated by overexpression of efflux transporters such as P-gp, ABCG2 and/or MRP1, remains a major obstacle hindering successful cancer chemotherapy. There has been great interest in the development of inhibitors towards these transporters to circumvent resistance. However, since the inhibition of transporter is not specific to cancer cells, a decrease in the cytotoxic drug dosing may be needed to prevent excess toxicity, thus undermining the potential benefit brought about by a drug efflux inhibitor. The design of potent MDR modulators specific towards resistant cancer cells and devoid of drug-drug interactions will be needed to effect MDR reversal. Recent evidence suggests that the PTEN/PI3K/Akt pathway may be exploited to alter ABCG2 subcellular localization, thereby circumventing MDR. Three PPARγ agonists (telmisartan, pioglitazone and rosiglitazone) that have been used in the clinics were tested for their effect on the PTEN/PI3K/Akt pathway and possible reversal of ABCG2-mediated drug resistance. The PPARγ agonists were found to be weak ABCG2 inhibitors by drug efflux assay. They were also shown to elevate the reduced PTEN expression in a resistant and ABCG2-overexpressing cell model, which inhibit the PI3K-Akt pathway and lead to the relocalization of ABCG2 from the plasma membrane to the cytoplasma, thus apparently circumventing the ABCG2-mediated MDR. Since this PPARγ/PTEN/PI3K/Akt pathway regulating ABCG2 is only functional in drug-resistant cancer cells with PTEN loss, the PPARγ agonists identified may represent promising agents targeting resistant cells for MDR reversal.
    British Journal of Pharmacology 08/2013; 170(5). DOI:10.1111/bph.12367 · 4.84 Impact Factor
  • Kenneth K.W. To · Daniel C. Poon · XG Chen · Ge Lin · Li-wu Fu
    Cancer Research 04/2013; 73(8 Supplement):976-976. DOI:10.1158/1538-7445.AM2013-976 · 9.33 Impact Factor
  • Kenneth K W To · S X Ren · C C M Wong · Chi Hin Cho
    [Show abstract] [Hide abstract]
    ABSTRACT: Multidrug resistance (MDR) of cancer cells to a wide spectrum of anticancer drugs is a major obstacle to successful chemotherapy. It is usually mediated by the overexpression of one of the three major ABC transporters actively pumping cytotoxic drugs out of the cells. There has been great interest in the search for inhibitors towards these transporters with an aim to circumvent resistance. This is usually achieved by screening from natural product library and the subsequent structural modifications. This study reported the reversal of ABCG2-mediated MDR in drug-selected resistant cancer cell lines by a class of host defense antimicrobial peptides, the human cathelicidin LL37 and its fragments. The effective human cathelicidin peptides (LL17-32 and LL13-37) were found to increase the accumulation of mitoxantrone in cancer cell lines with ABCG2 overexpression, thereby circumventing resistance to mitoxantrone. At the effective concentrations of the cathelicidin peptides, cell proliferation of the parental cells without elevated ABCG2 expression was not affected. Result from drug efflux and ATPase assays suggested that both LL17-32 and LL13-37 interact with ABCG2 and inhibit its transport activity in an uncompetitive manner. The peptides were also found to downregulate ABCG2 protein expression in the resistant cells, probably through a lysosomal degradation pathway. Our data suggest that the human cathelicidin may be further developed for sensitizing resistant cancer cells to chemotherapy.
    Peptides 12/2012; 40. DOI:10.1016/j.peptides.2012.12.019 · 2.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The stromal cell-derived factor-1α SDF-1α (CXCL12)/CXCR4 axis has been linked to poor prognosis in some cancers. As histone deacetylase inhibitors (HDIs) exert antitumor effects by targeting proteins affecting cell migration, we sought to evaluate the effects of the HDIs apicidin, vorinostat, entinostat (MS-275) and romidepsin on the expression and function of CXCR4 in human cancer cell lines. After treatment with romidepsin, CXCR4 mRNA expression increased 12-fold in UOK121 renal cancer cells, 16-fold in H460 non-small cell cancer cells and 4-fold in SF295 glioma cells; treatment with other HDIs yielded similar effects. CXCR4 induction was not observed in MCF7 breast cancer cells or SW620 colon cancer cells. To evaluate the corresponding functional increase, the effect of CXCR4 ligand, CXCL12, on ERK1/2, STAT3 and c-SRC activation and cell migration was examined in UOK121, SF295 and H460 cells. Alone, the HDIs increased pERK1/2, while reducing pSTAT-3 and pSRC. Following CXCL12 exposure, pERK1/2 induction was maintained, but STAT3 and SRC phosphorylation was impaired. These findings resulted in reduced basal and CXCL12-mediated cell migration. In conclusion, HDIs upregulated CXCR4 mRNA expression but impaired CXCL12-dependent signaling cascades through STAT3 and c-SRC, suggesting a potential role for HDIs in delaying or preventing metastatic processes in solid tumors.
    Cancer biology & therapy 11/2012; 14(2). DOI:10.4161/cbt.22957 · 3.07 Impact Factor
  • Source
    Shan Yu · Lin Jia · Yan Zhang · Dinglan Wu · Zhenyu Xu · Chi-Fai Ng · Kenneth K.W. To · Yu Huang · Franky L Chan
    [Show abstract] [Hide abstract]
    ABSTRACT: Development of antiandrogen-resistance in advanced prostate cancer involves multiple androgen receptor (AR)-dependent and -independent pathways. Here, we demonstrated that endothelial nitric oxide synthase (eNOS) exhibited an overexpression pattern in hormone-refractory prostate cancer and several models of advanced hormone-resistant prostate cancer. We further established a novel in vitro model of antiandrogen-resistant prostate cancer (LNCaP-BC) by long-term bicalutamide treatment. Besides antiandrogen-resistant and other enhanced malignant growth phenotypes, LNCaP-BC cells exhibited an increased activated eNOS expression and NO production, and suppressed AR transactivation status. Treatment with a NOS inhibitor L-NAME could re-sensitize the growth response to bicalutamide and enhance the AR transactivation in LNCaP-BC cells. Together, our present findings indicate that increased NO production by acquired increased expression of activated eNOS could contribute to the antiandrogen-resistant growth of prostate cancer cells, via a mechanism of NO-mediated suppression of AR activity, and also targeting eNOS could be a potential therapeutic strategy for antiandrogen-resistant prostate cancer.
    Cancer letters 09/2012; 328(1). DOI:10.1016/j.canlet.2012.09.006 · 5.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low selectivity is one of the major problems of currently used anticancer drugs, therefore, there is a high demand for novel, selective antitumor agents. In this study, the anticancer effects and mechanisms of guttiferone K (GUTK), a novel polyprenylated acylphloroglucinol derivative isolated from Garcinia cowa Roxb., were examined for its development as a novel drug targeting colon cancer. GUTK concentration- and time-dependently reduced the viability of human colon cancer HT-29 cells (IC(50) value 5.39 ± 0.22 μM) without affecting the viability of normal human colon epithelial CCD 841 CoN cells and induced G(0) /G(1) cell cycle arrest in HT-29 cells by down-regulating cyclins D1, D3 and cyclin-dependent kinases 4 and 6, while selectively restoring p21Waf1/Cip1 and p27Kip1 to levels comparable to those observed in normal colon cells, without affecting their levels in normal cells. GUTK (10.0 μM) induced cleavage of PARP, caspases-3, -8 and -9 and chromatin condensation to stimulate caspase-3-mediated apoptosis. The addition of a JNK inhibitor, SP600125, partially reversed GUTK-induced caspase-3 activity, indicating the possible involvement of JNK in GUTK-induced apoptosis. Furthermore, GUTK (10 mg/kg, i.p.) significantly decreased the tumor volume in a syngeneic colon tumor model when used alone or in combination with 5-fluorouracil without toxicity to the mice. Immunohistochemical staining of the tumor sections revealed a mechanism involving an increase in cleaved caspase-3 and a decrease in cell proliferation marker Ki-67. Our results support GUTK as a promising novel, potent and selective antitumor drug candidate for colon cancer.
    International Journal of Cancer 06/2012; 132(3). DOI:10.1002/ijc.27694 · 5.09 Impact Factor
  • Source
    Grace M Y Cheng · Kenneth K W To
    [Show abstract] [Hide abstract]
    ABSTRACT: ABCG2 is an efflux transporter commonly found to overexpress in multidrug resistant (MDR) cancer cells. It is also believed to be a survival factor for cancer stem cells to drive tumor growth. Tumor microenvironment represents an attractive new drug target because it allows complex interaction between a tumor and its surrounding normal cells, molecules, and blood vessels, which all participate in tumor progression. Hypoxia, glucose deprivation and acidosis are the hallmarks of tumor microenvironment. This study investigated the upregulation of ABCG2 by these adverse growth conditions within the tumor microenvironment. Reporter gene assay revealed that a region within the ABCG2 promoter close to the reported HIF-1α response element is responsible for ABCG2 upregulation. Increased ABCG2 efflux activity was observed under the same conditions, subsequently leading to reduced response to ABCG2 substrate anticancer drug. Importantly, glucose deprivation and hypoxia were also found to enhance the resistance level of ABCG2-overexpressing resistant cells with pre-existing genetic and epigenetic MDR mechanisms. Hypoxia was further demonstrated to cause a more malignant anchorage-independent growth phenotype in the resistant cells, which can be abolished by knocking down ABCG2. A better understanding of ABCG2 regulation by the tumor microenvironment may help design novel strategies to improve treatment outcome.
    06/2012; 2012:746025. DOI:10.5402/2012/746025
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stemlike cells have been isolated by their ability to efflux Hoechst 33342 dye and are called the side population (SP). We evaluated the effect of axitinib on targeting cancer stemlike cells and enhancing the efficacy of chemotherapeutical agents. We found that axitinib enhanced the cytotoxicity of topotecan and mitoxantrone in SP cells sorted from human lung cancer A549 cells and increased cell apoptosis induced by chemotherapeutical agents. Moreover, axitinib particularly inhibited the function of adenosine triphosphate (ATP)-binding cassette subfamily G member 2 (ABCG2) and reversed ABCG2-mediated multidrug resistance (MDR) in vitro. However, no significant reversal effect was observed in ABCB1-, ABCC1- or lung resistance-related protein (LRP)-mediated MDR. Furthermore, in both sensitive and MDR cancer cells axitinib neither altered the expression of ABCG2 at the mRNA or protein levels nor blocked the phosphorylation of AKT and extracellular signal-regulated kinase (ERK)1/2. In nude mice bearing ABCG2-overexpressing S1-M1-80 xenografts, axitinib significantly enhanced the antitumor activity of topotecan without causing additional toxicity. Taken together, these data suggest that axitinib particularly targets cancer stemlike cells and reverses ABCG2-mediated drug resistance by inhibiting the transporter activity of ABCG2.
    Molecular Medicine 04/2012; 18(1):887-98. DOI:10.2119/molmed.2011.00444 · 4.51 Impact Factor

Publication Stats

1k Citations
256.47 Total Impact Points


  • 2002–2015
    • The Chinese University of Hong Kong
      • Department of Pharmacy
      Hong Kong, Hong Kong
  • 2011
    • Sun Yat-Sen University
      • State Key Laboratory of Oncology
      Shengcheng, Guangdong, China
  • 2006–2008
    • National Cancer Institute (USA)
      • Center for Cancer Research
      Bethesda, MD, United States
  • 2004–2006
    • National Institutes of Health
      • • Center for Cancer Research
      • • Laboratory of Human Carcinogenesis
      Maryland, United States