J. Wilms

California Institute of Technology, Pasadena, California, United States

Are you J. Wilms?

Claim your profile

Publications (581)1019.97 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We show that the X-ray line flux of the Mn Kalpha line at 5.9 keV from the decay of 55Fe is a promising diagnostic to distinguish between Type Ia supernova (SN Ia) explosion models. Using radiation transport calculations, we compute the line flux for two 3D explosion models: a near-Chandrasekhar mass delayed detonation and a violent merger of two white dwarfs. Both models are based on solar metallicity zero-age main sequence progenitors. Due to explosive nuclear burning at higher density, the delayed-detonation model synthesises 3.5 times more radioactive 55Fe than the merger model. As a result, we find that the peak Mn Kalpha line flux of the delayed-detonation model exceeds that of the merger model by a factor of 4.5. Since in both models the 5.9 keV X-ray flux peaks five to six years after the explosion, a single measurement of the X-ray line emission at this time can place a constraint on the explosion physics that is complementary to those derived from earlier phase optical spectra or light curves. We perform detector simulations of current and future X-ray telescopes to investigate the possibilities of detecting the X-ray line at 5.9 keV. For the delayed-detonation scenario, a line detection is feasible with Chandra up to 3 Mpc for an exposure time of 10^6 s. We find that it should be possible with currently existing X-ray instruments (with exposure times 5x10^5 s) to detect both of our models at sufficiently high S/N to distinguish between them for hypothetical events within the Local Group. The prospects for detection will be better with future missions. For example, the proposed Athena/X-IFU instrument could detect our delayed-detonation model out to a distance of 5 Mpc. This would make it possible to study future events occurring during its operational life at distances comparable to those of the recent supernovae SN 2011fe (6.4 Mpc) and SN 2014J (3.5 Mpc).
    12/2014;
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context. The jets of radio-loud Active Galactic Nuclei are among the most powerful particle accelerators in the Universe, and a plausible production site for high-energy cosmic rays. The detection of high-energy neutrinos from these sources would provide unambiguous evidence of a hadronic component in such jets. High-luminosity blazars, such as the flat-spectrum radio quasars (FSRQs), are promising candidates to search for such emission. Because of the low fluxes due to large redshift, these sources are however challenging for the current generation of neutrino telescopes such as ANTARES and IceCube. Aims. This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazars. Methods. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed blazars, using data collected from 2007 to 2012 by ANTARES. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. The neutrino event selection and statistical analysis are identical to the already published ANTARES search for neutrino point sources, which included a few (non-lensed) FSRQs. Results. Based on ANTARES data, we derive upper limits on the intrinsic luminosity of the selected lensed sources. We obtain the strongest constraint from the lensed system B0218$+$357, providing a limit on the total neutrino luminosity of this FSRQ of $1.08\times 10^{46}\,\mathrm{erg}\,\mathrm{s}^{-1}$. This limit is about one order of magnitude lower than those obtained in the ANTARES standard point source search with non-lensed FSRQs, demonstrating the utility of the method.
    Journal of Cosmology and Astroparticle Physics 11/2014; 11:017. · 6.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Supermassive black holes with masses of millions to billions of solar masses are commonly found in the centers of galaxies. Astronomers seek to image jet formation using radio interferometry but still suffer from insufficient angular resolution. An alternative method to resolve small structures is to measure the time variability of their emission. Here we report on gamma-ray observations of the radio galaxy IC 310 obtained with the MAGIC telescopes, revealing variability with doubling time scales faster than 4.8 min. Causality constrains the size of the emission region to be smaller than 20% of the gravitational radius of its central black hole. We suggest that the emission is associated with pulsar-like particle acceleration by the electric field across a magnetospheric gap at the base of the radio jet.
    Science (New York, N.Y.). 11/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims. We investigate the long-term evolution of the Cyclotron Resonance Scattering Feature (CRSF) in the spectrum of the binary X-ray pulsar Her X-1 and present evidence of a true secular decrease in the centroid energy Ecyc of the cyclotron line in the pulse phase averaged spectra from 1996 to 2012. Methods. Our results are based on repeated observations of Her X-1 by those X-ray observatories capable of measuring clearly beyond the cyclotron line energy of about 40 keV. Results. The historical evolution of the pulse phase averaged CRSF centroid energy Ecyc since its discovery in 1976 is characterized by an initial value around 35 keV, an abrupt jump upwards to beyond about 40 keV between 1990 and 1994, and an apparent decay thereafter. Much of this decay, however, was found to be due to an artifact, namely a correlation between Ecyc and the X-ray luminosity Lx discovered in 2007. In observations after 2006, however, we now find a statistically significant true secular decrease in the cyclotron line energy. At the same time, the dependence of Ecyc on X-ray luminosity is still valid with an increase of about 5% in energy for a factor of two increase in luminosity. A decrease in Ecyc by 4.2 keV over the 16 years from 1996 to 2012 can either be modeled by a linear decay, or by a slow decay until 2006 followed by a more abrupt decrease thereafter. Conclusions. We speculate that the physical reason could be connected to a geometric displacement of the cyclotron resonant scattering region in the polar field or to a true physical change in the magnetic field configuration at the polar cap by the continued accretion.
    10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deep waters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same $^{40}$K decay and the localization bioluminescent activity in the neighbourhood. The single unit can cleanly identify atmospheric muons and provide sensitivity to the muon arrival directions.
    European Physical Journal C 09/2014; 74:3056. · 5.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Timing of high-count rate sources with the NuSTAR Small Explorer Mission requires specialized analysis techniques. NuSTAR was primarily designed for spectroscopic observations of sources with relatively low count-rates rather than for timing analysis of bright objects. The instrumental dead time per event is relatively long (~2.5 msec), and varies by a few percent event-to-event. The most obvious effect is a distortion of the white noise level in the power density spectrum (PDS) that cannot be modeled easily with the standard techniques due to the variable nature of the dead time. In this paper, we show that it is possible to exploit the presence of two completely independent focal planes and use the cross power density spectrum to obtain a good proxy of the white noise-subtracted PDS. Thereafter, one can use a Monte Carlo approach to estimate the remaining effects of dead time, namely a frequency-dependent modulation of the variance and a frequency-independent drop of the sensitivity to variability. In this way, most of the standard timing analysis can be performed, albeit with a sacrifice in signal to noise relative to what would be achieved using more standard techniques. We apply this technique to NuSTAR observations of the black hole binaries GX 339-4, Cyg X-1 and GRS 1915+105.
    09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We characterized the broad-band X-ray spectra of Swift J1745-26 during the decay of the 2013 outburst using INTEGRAL ISGRI, JEM-X and Swift XRT. The X-ray evolution is compared to the evolution in optical and radio. We fit the X- ray spectra with phenomenological and Comptonization models. We discuss possible scenarios for the physical origin of a ~50 day flare observed both in optical and X- rays ~170 days after the peak of the outburst. We conclude that it is a result of enhanced mass accretion in response to an earlier heating event. We characterized the evolution in the hard X-ray band and showed that for the joint ISGRI-XRT fits, the e-folding energy decreased from 350 keV to 130 keV, while the energy where the exponential cut-off starts increased from 75 keV to 112 keV as the decay progressed.We investigated the claim that high energy cut-offs disappear with the compact jet turning on during outburst decays, and showed that spectra taken with HEXTE on RXTE provide insufficient quality to characterize cut-offs during the decay for typical hard X-ray fluxes. Long INTEGRAL monitoring observations are required to understand the relation between the compact jet formation and hard X-ray behavior. We found that for the entire decay (including the flare), the X-ray spectra are consistent with thermal Comptonization, but a jet synchrotron origin cannot be ruled out.
    09/2014; 445(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: LOFT (Large Observatory for X-ray Timing) is one of the five candidates that were considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and neutron stars. Its pointed instrument is the Large Area Detector (LAD), a 10 m 2 -class instrument operating in the 2-30keV range, which holds the capability to revolutionise studies of variability from X-ray sources on the millisecond time scales. The LAD instrument has now completed the assessment phase but was not down-selected for launch. However, during the assessment, most of the trade-offs have been closed leading to a robust and well documented design that will be re- proposed in future ESA calls. In this talk, we will summarize the characteristics of the LAD design and give an overview of the expectations for the instrument capabilities.
    08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: LOFT, the Large Observatory For X-ray Timing, was one of the ESA M3 mission candidates that completed their assessment phase at the end of 2013. LOFT is equipped with two instruments, the Large Area Detector (LAD) and the Wide Field Monitor (WFM). The LAD performs pointed observations of several targets per orbit (~90 minutes), providing roughly ~80 GB of proprietary data per day (the proprietary period will be 12 months). The WFM continuously monitors about 1/3 of the sky at a time and provides data for about ~100 sources a day, resulting in a total of ~20 GB of additional telemetry. The LOFT Burst alert System additionally identifies on-board bright impulsive events (e.g., Gamma-ray Bursts, GRBs) and broadcasts the corresponding position and trigger time to the ground using a dedicated system of ~15 VHF receivers. All WFM data are planned to be made public immediately. In this contribution we summarize the planned organization of the LOFT ground segment (GS), as established in the mission Yellow Book 1 . We describe the expected GS contributions from ESA and the LOFT consortium. A review is provided of the planned LOFT data products and the details of the data flow, archiving and distribution. Despite LOFT was not selected for launch within the M3 call, its long assessment phase (> 2 years) led to a very solid mission design and an efficient planning of its ground operations.
    08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: LOFT (Large Observatory For x-ray Timing) is one of the ESA M3 missions selected within the Cosmic Vision program in 2011 to carry out an assessment phase study and compete for a launch opportunity in 2022-2024. The phase-A studies of all M3 missions were completed at the end of 2013. LOFT is designed to carry on-board two instruments with sensitivity in the 2-50 keV range: a 10 m 2 class Large Area Detector (LAD) with a <1{\deg} collimated FoV and a wide field monitor (WFM) making use of coded masks and providing an instantaneous coverage of more than 1/3 of the sky. The prime goal of the WFM will be to detect transient sources to be observed by the LAD. However, thanks to its unique combination of a wide field of view (FoV) and energy resolution (better than 500 eV), the WFM will be also an excellent monitoring instrument to study the long term variability of many classes of X-ray sources. The WFM consists of 10 independent and identical coded mask cameras arranged in 5 pairs to provide the desired sky coverage. We provide here an overview of the instrument design, configuration, and capabilities of the LOFT WFM. The compact and modular design of the WFM could easily make the instrument concept adaptable for other missions.
    08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hard X-ray spectra of black hole binaries in the low/hard state are well modeled by thermal Comptonization of soft seed photons by a corona-type region with $kT$\thinspace$\sim 50${\thinspace}keV and optical depth around 1. Previous spectral studies of 1E{\thinspace}1740.7$-$2942, including both the soft and the hard X-ray bands, were always limited by gaps in the spectra or by a combination of observations with imaging and non-imaging instruments. In this study, we have used three rare nearly-simultaneous observations of 1E{\thinspace}1740.7$-$1942 by both XMM-Newton and INTEGRAL satellites to combine spectra from four different imaging instruments with no data gaps, and we successfully applied the Comptonization scenario to explain the broadband X-ray spectra of this source in the low/hard state. For two of the three observations, our analysis also shows that, models including Compton reflection can adequately fit the data, in agreement with previous reports. We show that the observations can also be modeled by a more detailed Comptonization scheme. Furthermore, we find the presence of an iron K-edge absorption feature in one occasion, which confirms what had been previously observed by Suzaku. Our broadband analysis of this limited sample shows a rich spectral variability in 1E{\thinspace}1740.7$-$2942 at the low/hard state, and we address the possible causes of these variations. More simultaneous soft/hard X-ray observations of this system and other black-hole binaries would be very helpful in constraining the Comptonization scenario and shedding more light on the physics of these systems.
    Astronomy and Astrophysics 08/2014; 569. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In many active galaxies, the X-ray reflection features from the innermost regions of the accretion disc are relativistically distorted. This distortion allows us to measure parameters of the black hole such as its spin. The ratio in flux between the direct and the reflected radiation, the so-called reflection fraction, is determined directly from the geometry and location of primary source of radiation. We calculate the reflection fraction in the lamp post geometry in order to determine its maximal possible value for a given value of black hole spin. We show that high reflection fractions in excess of 2 are only possible for rapidly rotating black holes, suggesting that the high spin sources produce the strongest relativistic reflection features. Using simulations we show that taking this constraint into account does significantly improve the determination of the spin values. We make software routines for the most popular X-ray data analysis packages available that incorporate these additional constraints.
    Monthly Notices of the Royal Astronomical Society Letters 08/2014; 444(1). · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present an overview of the development of the end-to-end simulation programs for the instruments on the future European X-ray astronomy mission Athena. The overview includes the design considerations behind the simulation software and the current status and planned developments of the simulators for the X-ray Integral Field Unit and the Wide Field Imager.
    SPIE Astronomical Telescopes + Instrumentation; 07/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present results from the first Suzaku observation of the high-mass X-ray binary 4U 1538-522. The broad-band spectral coverage of Suzaku allows for a detailed spectral analysis, characterizing the cyclotron resonance scattering feature at $23.0 \pm 0.4$ keV and the iron K$\alpha$ line at $6.426 \pm 0.008$ keV, as well as placing limits on the strengths of the iron K$\beta$ line and the iron K edge. We track the evolution of the spectral parameters both in time and in luminosity, notably finding a significant positive correlation between cyclotron line energy and luminosity. A dip and spike in the lightcurve is shown to be associated with an order-of-magnitude increase in column density along the line of sight, as well as significant variation in the underlying continuum, implying the accretion of a overdense region of a clumpy stellar wind. We also present a phase-resolved analysis, with most spectral parameters of interest showing significant variation with phase. Notably, both the cyclotron line energy and the iron K$\alpha$ line intensity vary significantly with phase, with the iron line intensity significantly out-of-phase with the pulse profile. We discuss the implications of these findings in the context of recent work in the areas of accretion column physics and cyclotron resonance scattering feature formation.
    The Astrophysical Journal 07/2014; 792(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Centaurus A is the closest radio-loud active galaxy. Very Long Baseline Interferometry (VLBI) enables us to study the jet-counterjet system on milliarcsecond (mas) scales, providing essential information for jet emission and propagation models. We study the evolution of the central parsec jet structure of Cen A over 3.5 years. The proper motion analysis of individual jet components allows us to constrain jet formation and propagation and to test the proposed correlation of increased high energy flux with jet ejection events. Cen A is an exceptional laboratory for such detailed study as its proximity translates to unrivaled linear resolution, where 1 mas corresponds to 0.018 pc. The first 7 epochs of high-resolution TANAMI VLBI observations at 8 GHz of Cen A are presented, resolving the jet on (sub-)mas scales. They show a differential motion of the sub-pc scale jet with significantly higher component speeds further downstream where the jet becomes optically thin. We determined apparent component speeds within a range of 0.1c to 0.3c, as well as identified long-term stable features. In combination with the jet-to-counterjet ratio we can constrain the angle to the line of sight to ~12{\deg} to 45{\deg}. The high resolution kinematics are best explained by a spine-sheath structure supported by the downstream acceleration occurring where the jet becomes optically thin. On top of the underlying, continuous flow, TANAMI observations clearly resolve individual jet features. The flow appears to be interrupted by an obstacle causing a local decrease in surface brightness and a circumfluent jet behavior. We propose a jet-star interaction scenario to explain this appearance. The comparison of jet ejection times with high X-ray flux phases yields a partial overlap of the onset of the X-ray emission and increasing jet activity, but the limited data do not support a robust correlation.
    Astronomy and Astrophysics 07/2014; 569. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Very long baseline interferometry at millimetre/submillimetre wavelengths (mmVLBI) offers the highest achievable spatial resolution at any wavelength in astronomy. The anticipated inclusion of ALMA as a phased array into a global VLBI network will bring unprecedented sensitivity and a transformational leap in capabilities for mmVLBI. Building on years of pioneering efforts in the US and Europe the ongoing ALMA Phasing Project (APP), a US-led international collaboration with MPIfR-led European contributions, is expected to deliver a beamformer and VLBI capability to ALMA by the end of 2014 (APP: Fish et al. 2013, arXiv:1309.3519). This report focuses on the future use of mmVLBI by the international users community from a European viewpoint. Firstly, it highlights the intense science interest in Europe in future mmVLBI observations as compiled from the responses to a general call to the European community for future research projects. A wide range of research is presented that includes, amongst others: - Imaging the event horizon of the black hole at the centre of the Galaxy - Testing the theory of General Relativity an/or searching for alternative theories - Studying the origin of AGN jets and jet formation - Cosmological evolution of galaxies and BHs, AGN feedback - Masers in the Milky Way (in stars and star-forming regions) - Extragalactic emission lines and astro-chemistry - Redshifted absorption lines in distant galaxies and study of the ISM and circumnuclear gas - Pulsars, neutron stars, X-ray binaries - Testing cosmology - Testing fundamental physical constants
    06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The IceCube Collaboration has announced the discovery of a neutrino flux in excess of the atmospheric background. Due to the steeply falling atmospheric background spectrum, events at PeV energies are most likely of extraterrestrial origin. We present the multiwavelength properties of the six radio brightest blazars positionally coincident with these events using contemporaneous data of the TANAMI blazar sample, including high-resolution images and spectral energy distributions. Assuming the X-ray to {\gamma}-ray emission originates in the photoproduction of pions by accelerated protons, the integrated predicted neutrino luminosity of these sources is large enough to explain the two detected PeV events.
    06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper reports a search for spatial clustering of the arrival directions of high energy muon neutrinos detected by the ANTARES neutrino telescope. An improved two-point correlation method is used to study the autocorrelation of 3058 neutrino candidate events as well as cross-correlations with other classes of astrophysical objects: sources of high energy gamma rays, massive black holes and nearby galaxies. No significant deviations from the isotropic distribution of arrival directions expected from atmospheric backgrounds are observed.
    Journal of Cosmology and Astroparticle Physics 05/2014; 2014(05):001. · 6.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Little observational data are available on the weak stellar winds of hot subdwarf stars of B spectral type (sdB). Close binary systems composed of an sdB star and a compact object (white dwarf, neutron star or black hole) could be detected as accretion-powered X-ray sources. The study of their X-ray emission can probe the properties of line-driven winds of sdB stars that can not be derived directly from spectroscopy because of the low luminosity of these stars. Here we report on the first sensitive X-ray observations of two sdB binaries with compact companions. CD -30 11223 is the sdB binary with the shortest known orbital period (1.2 h) and its companion is certainly a white dwarf. PG 1232-136 is an sdB binary considered the best candidate to host a black hole companion. We observed these stars with XMM-Newton in August 2013 for 50 ks and in July 2009 for 36 ks, respectively. None of them was detected and we derived luminosity upper limits of about 1.5x10^29 erg/s for CD -30 11223 5x10^29 erg/s for PG 1232-136. The corresponding mass loss rate for PG 1232-136 is poorly constrained, owing to the unknown efficiency for black hole accretion. On the other hand, in the case of CD -30 11223 we could derive, under reasonable assumptions, an upper limit of about 3x10^-13 solar masses/yr on the wind mass loss rate from the sdB star. This is one of the few observational constraints on the weak winds expected in this class of low mass hot stars. We also report the results on the X-ray emission from a cluster of galaxies serendipitously discovered in the field of CD -30 11223.
    Monthly Notices of the Royal Astronomical Society 04/2014; 441(3). · 5.52 Impact Factor

Publication Stats

3k Citations
1,019.97 Total Impact Points

Institutions

  • 2013–2014
    • California Institute of Technology
      • Jet Propulsion Laboratory
      Pasadena, California, United States
    • Paris Diderot University
      Lutetia Parisorum, Île-de-France, France
  • 2006–2014
    • Friedrich-Alexander Universität Erlangen-Nürnberg
      Erlangen, Bavaria, Germany
  • 2012
    • Polytechnical University of Valencia
      Valenza, Valencia, Spain
  • 2010
    • University of Maryland, Baltimore County
      • Center for Space Science and Technology
      Baltimore, Maryland, United States
  • 2009
    • Universitätsklinikum Erlangen
      Erlangen, Bavaria, Germany
  • 2007–2008
    • The University of Warwick
      • Department of Physics
      Warwick, ENG, United Kingdom
  • 1970–2008
    • University of Tuebingen
      • Institute for Astronomy and Astrophysics
      Tübingen, Baden-Wuerttemberg, Germany
  • 2005
    • Massachusetts Institute of Technology
      Cambridge, Massachusetts, United States
  • 2004
    • University of Colorado
      Denver, Colorado, United States