José A Rodríguez-Alfaro

Universidad del País Vasco / Euskal Herriko Unibertsitatea, Leioa, Basque Country, Spain

Are you José A Rodríguez-Alfaro?

Claim your profile

Publications (8)35.35 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The potential regulation of protein trafficking by calmodulin (CaM) is a novel concept that remains to be substantiated. We proposed that KCNQ2 K+ channel trafficking is regulated by CaM binding to the C-terminal A and B helices. Here we show that the L339R mutation in helix A, which is linked to human benign neonatal convulsions, perturbs CaM binding to KCNQ2 channels and prevents their correct trafficking to the plasma membrane. We used glutathione S-transferase fused to helices A and B to examine the impact of this and other mutations in helix A (I340A, I340E, A343D, and R353G) on the interaction with CaM. The process appears to require at least two steps; the first involves the transient association of CaM with KCNQ2, and in the second, the complex adopts an "active" conformation that is more stable and is that which confers the capacity to exit the endoplasmic reticulum. Significantly, the mutations that we have analyzed mainly affect the stability of the active configuration of the complex, whereas Ca2+ alone appears to affect the initial binding step. The spectrum of responses from this collection of mutants revealed a strong correlation between adopting the active conformation and channel trafficking in mammalian cells. These data are entirely consistent with the concept that CaM bound to KCNQ2 acts as a Ca2+ sensor, conferring Ca2+ dependence to the trafficking of the channel to the plasma membrane and fully explaining the requirement of CaM binding for KCNQ2 function.
    Journal of Biological Chemistry 07/2009; 284(31):20668-75. · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Voltage-dependent potassium KCNQ2 (Kv7.2) channels play a prominent role in the control of neuronal excitability. These channels must associate with calmodulin to function correctly and, indeed, a mutation (R353G) that impairs this association provokes the onset of a form of human neonatal epilepsy known as benign familial neonatal convulsions (BFNC). We show here that perturbation of calmodulin binding leads to endoplasmic reticulum (ER) retention of KCNQ2, reducing the number of channels that reach the plasma membrane. Interestingly, elevating the expression of calmodulin in the BFNC mutant partially restores the intracellular distribution of the KCNQ channel. In contrast, overexpression of a Ca(2+)-binding incompetent calmodulin or sequestering of calmodulin promotes the retention of wild-type channels in the ER. Thus, a direct interaction with Ca(2+)-calmodulin appears to be critical for the correct activity of KCNQ2 potassium channels as it controls the channels' exit from the ER.
    The FASEB Journal 05/2008; 22(4):1135-43. · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The C2 domain from protein kinase Cepsilon (PKCepsilon) binds to membranes but does not require Ca2+ to do so. This work examines the mode in which the conformation and organization of the phospholipids present in model membranes are altered by the presence of the C2 domain from PKCepsilon (C2-PKCepsilon). It is concluded from the results of differential scanning calorimetry that the protein shifted the temperature of the gel to the fluid phase transition of pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (POPA), widening the transition and increasing it to a higher temperature. When POPA was mixed with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), the changes in the transition were smaller and no phase separation was observed. Experiments performed using magic angle spinning NMR showed that this C2 domain specifically affected POPA when the phospholipid was mixed with POPC, as indicated by the downfield shift in the isotropic resonance of POPA, the widening of the resonance peak, the decrease in T2, and the decrease in T1 observed at all temperatures. All these effects were quite marked compared with the very small effect observed with POPC, indicating the specificity of the effect. The presence of the C2-PKCepsilon protein changed the conformation of the polar head group of POPA, as shown by infrared spectroscopy. All these results clearly illustrate the electrostatic interaction that takes place between this C2 domain and membranes which contain POPA in the absence of Ca2+.
    Biochemistry 04/2007; 46(11):3183-92. · 3.19 Impact Factor
  • Jose A Rodríguez-Alfaro, Juan C Gomez-Fernandez, Senena Corbalan-Garcia
    [Show abstract] [Hide abstract]
    ABSTRACT: The C2 domain of PKCalpha is a Ca(2+)-dependent membrane-targeting module involved in the plasma membrane localization of the enzyme. Recent findings have shown an additional area located in the beta3-beta4 strands, named the lysine-rich cluster, which has been demonstrated to be involved in the PtdIns(4,5)P(2)-dependent activation of the enzyme. Nevertheless, whether other anionic phospholipids can bind to this region and contribute to the regulation of the enzyme's function is not clear. To study other possible roles for this cluster, we generated double and triple mutants that substituted the lysine by alanine residues, and studied their binding and activation properties in a Ca(2+)/phosphatidylserine-dependent manner and compared them with the wild-type protein. It was found that some of the mutants exerted a constitutive activation independently of membrane binding. Furthermore, the constructs were fused to green fluorescent protein and were expressed in fibroblast cells. It was shown that none of the mutants was able to translocate to the plasma membrane, even in saturating conditions of Ca(2+) and diacylglycerol, suggesting that the interactions performed by this lysine-rich cluster are a key event in the subcellular localization of PKCalpha. Taken together, the results obtained showed that these lysine residues might be involved in two functions: one to establish an intramolecular interaction that keeps the enzyme in an inactive conformation; and the second, once the enzyme has been partially activated, to establish further interactions with diacylglycerol and/or acidic phospholipids, leading to the full activation of PKCalpha.
    Journal of Molecular Biology 02/2004; 335(4):1117-29. · 3.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In view of the interest shown in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) as a second messenger, we studied the activation of protein kinase Calpha by this phosphoinositide. By using two double mutants from two different sites located in the C2 domain of protein kinase Calpha, we have determined and characterized the PtdIns(4,5)P(2)-binding site in the protein, which was found to be important for its activation. Thus, there are two distinct sites in the C2 domain: the first, the lysine-rich cluster located in the beta3- and beta4-sheets and which activates the enzyme through direct binding of PtdIns(4,5)P(2); and the second, the already well described site formed by the Ca(2+)-binding region, which also binds phosphatidylserine and a result of which the enzyme is activated. The results obtained in this work point to a sequential activation model, in which protein kinase Calpha needs Ca(2+) before the PtdIns(4,5)P(2)-dependent activation of the enzyme can occur.
    Journal of Biological Chemistry 03/2003; 278(7):4972-80. · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The C2 domain of protein kinase Calpha (PKCalpha) corresponds to the regulatory sequence motif, found in a large variety of membrane trafficking and signal transduction proteins, that mediates the recruitment of proteins by phospholipid membranes. In the PKCalpha isoenzyme, the Ca2+-dependent binding to membranes is highly specific to 1,2-sn-phosphatidyl-l-serine. Intrinsic Ca2+ binding tends to be of low affinity and non-cooperative, while phospholipid membranes enhance the overall affinity of Ca2+ and convert it into cooperative binding. The crystal structure of a ternary complex of the PKCalpha-C2 domain showed the binding of two calcium ions and of one 1,2-dicaproyl-sn-phosphatidyl-l-serine (DCPS) molecule that was coordinated directly to one of the calcium ions. The structures of the C2 domain of PKCalpha crystallised in the presence of Ca2+ with either 1,2-diacetyl-sn-phosphatidyl-l-serine (DAPS) or 1,2-dicaproyl-sn-phosphatidic acid (DCPA) have now been determined and refined at 1.9 A and at 2.0 A, respectively. DAPS, a phospholipid with short hydrocarbon chains, was expected to facilitate the accommodation of the phospholipid ligand inside the Ca2+-binding pocket. DCPA, with a phosphatidic acid (PA) head group, was used to investigate the preference for phospholipids with phosphatidyl-l-serine (PS) head groups. The two structures determined show the presence of an additional binding site for anionic phospholipids in the vicinity of the conserved lysine-rich cluster. Site-directed mutagenesis, on the lysine residues from this cluster that interact directly with the phospholipid, revealed a substantial decrease in C2 domain binding to vesicles when concentrations of either PS or PA were increased in the absence of Ca2+. In the complex of the C2 domain with DAPS a third Ca2+, which binds an extra phosphate group, was identified in the calcium-binding regions (CBRs). The interplay between calcium ions and phosphate groups or phospholipid molecules in the C2 domain of PKCalpha is supported by the specificity and spatial organisation of the binding sites in the domain and by the variable occupancies of ligands found in the different crystal structures. Implications for PKCalpha activity of these structural results, in particular at the level of the binding affinity of the C2 domain to membranes, are discussed.
    Journal of Molecular Biology 08/2002; 320(2):277-91. · 3.96 Impact Factor
  • Source
    S Corbalán-García, J A Rodríguez-Alfaro, J C Gómez-Fernández
    [Show abstract] [Hide abstract]
    ABSTRACT: The C2 domain is a conserved protein module present in various signal-transducing proteins. To investigate the function of the C2 domain of protein kinase Calpha (PKCalpha), we have generated a recombinant glutathione S-transferase-fused C2 domain from rat PKCalpha, PKC-C2. We found that PKC-C2 binds with high affinity (half-maximal binding at 0.6 microM) to lipid vesicles containing the negatively charged phospholipid phosphatidylserine. When expressed into COS and HeLa cells, most of the PKC-C2 was found at the plasma membrane, whereas when the cells were depleted of Ca2+ by incubation with EGTA and ionophore, the C2 domain was localized preferentially in the cytosol. Ca2+ titration was performed in vivo and the critical Ca2+ concentration ranged from 0.1 to 0.32 microM. We also identified, by site-directed mutagenesis, three aspartic residues critical for that Ca2+ interaction, namely Asp-187, Asp-246 and Asp-248. Mutation of these residues to asparagine, to abolish their negative charge, resulted in a domain expressed as the same extension as wild-type protein that could interact in vitro with neither Ca2+ nor phosphatidylserine. Overexpression of these mutants into COS and HeLa cells also showed that they cannot localize at the plasma membrane, as demonstrated by immunofluorescence staining and subcellular fractionation. These results suggest that the Ca2+-binding site might be involved in promoting the interaction of the C2 domain of PKCalpha with the plasma membrane in vivo.
    Biochemical Journal 03/1999; 337 ( Pt 3):513-21. · 4.78 Impact Factor
  • Biochemical Journal 01/1999; 337(3). · 4.78 Impact Factor

Publication Stats

272 Citations
35.35 Total Impact Points


  • 2008
    • Universidad del País Vasco / Euskal Herriko Unibertsitatea
      • Departamento de Farmacología
      Leioa, Basque Country, Spain
  • 2003–2007
    • University of Murcia
      • • Facultad de Veterinaria
      • • Departamento de Bioquímica y Biología Molecular A
      Murcia, Murcia, Spain