J Meers

University of Queensland , Brisbane, Queensland, Australia

Are you J Meers?

Claim your profile

Publications (129)188.42 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Meleagrid herpesvirus 1 (MeHV-1 or turkey herpesvirus) has been widely used as a vaccine in commercial poultry. Initially, these vaccine applications were for the prevention of Marek's disease resulting from Gallid herpesvirus 2 infections, while more recently MeHV-1 has been used as recombinant vector for other poultry infections. The construction of herpesvirus infectious clones that permit propagation and manipulation of the viral genome in bacterial hosts has advanced the studies of herpesviral genetics. The current study reports the construction of five MeHV-1 infectious clones. The in vitro properties of viruses recovered from these clones were indistinguishable from the parental MeHV-1. In contrast, the rescued MeHV-1 viruses were significantly attenuated when used in vivo. Complete sequencing of the infectious clones identified the absence of two regions of the MeHV-1 genome compared to the MeHV-1 reference sequence. These analyses determined the rescued viruses have seven genes, UL43, UL44, UL45, UL56, HVT071, sorf3 and US2 either partially or completely deleted. In addition, single nucleotide polymorphisms were identified in all clones compared with the MeHV-1 reference sequence. As a consequence of one of the polymorphisms identified in the UL13 gene, four of the rescued viruses were predicted to encode a serine/threonine protein kinase lacking two of three domains required for activity. Thus four of the recovered viruses have a total of eight missing or defective genes. The implications of these findings in the context of herpesvirus biology and infectious clone construction are discussed.
    Virus Genes 07/2015; DOI:10.1007/s11262-015-1216-7 · 1.84 Impact Factor
  • Source
    PLoS ONE 05/2015; 10(5):e0125741. DOI:10.1371/journal.pone.0125741 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gibbon ape leukaemia virus (GALV) and koala retrovirus (KoRV) share a remarkably close sequence identity despite the fact that they occur in distantly related mammals on different continents. It has previously been suggested that infection of their respective hosts may have occurred as a result of a species jump from another, as yet unidentified vertebrate host. To investigate possible sources of these retroviruses in the Australian context, DNA samples were obtained from 42 vertebrate species and screened using PCR in order to detect proviral sequences closely related to KoRV and GALV. Four proviral partial sequences totalling 2880 bases which share a strong similarity with KoRV and GALV were detected in DNA from a native Australian rodent, the grassland melomys, Melomys burtoni. We have designated this novel gammaretrovirus Melomys burtoni retrovirus (MbRV). The concatenated nucleotide sequence of MbRV shares 93% identity with the corresponding sequence from GALV-SEATO and 83% identity with KoRV. The geographic ranges of the grassland melomys and of the koala partially overlap. Thus a species jump by MbRV from melomys to koalas is conceivable. However the genus Melomys does not occur in mainland South East Asia and so it appears most likely that another as yet unidentified host was the source of GALV.
    PLoS ONE 09/2014; 9(9):e106954. DOI:10.1371/journal.pone.0106954 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Veterinarians have few tools to predict the rate of disease progression in FIV-infected cats. In contrast, in HIV infection plasma viral RNA load and acute phase protein concentrations are commonly used as predictors of disease progression. This study evaluated these predictors in cats naturally infected with FIV. In older cats (> 5 years), log10 FIV RNA load was higher in the terminal stages of disease compared to the asymptomatic stage. There was a significant association between log10 FIV RNA load and both log10 serum amyloid A concentration and age in unwell FIV-infected cats. This study suggests that viral RNA load and serum amyloid A warrant further investigation as predictors of disease status and prognosis in FIV-infected cats.
    The Veterinary Journal 08/2014; 201(2). DOI:10.1016/j.tvjl.2014.01.023 · 2.17 Impact Factor
  • 05/2014; 24:31-33. DOI:10.3853/j.1835-4211.24.2014.1610
  • 05/2014; 24:15-17. DOI:10.3853/j.1835-4211.24.2014.1608
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Nipah virus (NiV) is a recently emerged zoonotic virus that causes severe disease in humans. The reservoir hosts for NiV, bats of the genus Pteropus (known as flying-foxes) are found across the Asia-Pacific including Australia. While NiV has not been detected in Australia, evidence for NiV infection has been found in flying-foxes in some of Australia's closest neighbours. A qualitative risk assessment was undertaken to assess the risk of NiV establishing in Australian flying-foxes through flying-fox movements from nearby regions. Events surrounding the emergence of new diseases are typically uncertain and in this study an expert opinion workshop was used to address gaps in knowledge. Given the difficulties in combining expert opinion, five different combination methods were analysed to assess their influence on the risk outcome. Under the baseline scenario where the median was used to combine opinions, the risk was estimated to be very low. However, this risk increased when the mean and linear opinion pooling combination methods were used. This assessment highlights the effects that different methods for combining expert opinion have on final risk estimates and the caution needed when interpreting these outcomes given the high degree of uncertainty in expert opinion. This work has provided a flexible model framework for assessing the risk of NiV establishment in Australian flying-foxes through bat movements which can be updated when new data become available.
    Epidemiology and Infection 02/2014; 143(10):1-14. DOI:10.1017/S0950268813003336 · 2.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2–8 dpi. Viral ribonucleic acid was detected from 1–15 days post inoculation from the oral route and 1–24 days post inoculation from the cloacal route (cycle threshold ,40). Most ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection. Copyright: ß 2014 Wibawa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: The study was jointly funded by CSIRO and the Australian Centre for International Agriculture Research (ACIAR) grant number AH/2004/040. Hendra Wibawa was supported by an ACIAR John Allwright Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist.
    PLoS ONE 01/2014; 9(1):e83417. DOI:10.1371/journal.pone.0083417 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2-8 dpi. Viral ribonucleic acid was detected from 1-15 days post inoculation from the oral route and 1-24 days post inoculation from the cloacal route (cycle threshold <40). Most ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection.
    PLoS ONE 01/2014; 9(1):e83417. · 3.53 Impact Factor
  • Source
    Joerg Henning, Than Hla, Joanne Meers
    [Show abstract] [Hide abstract]
    ABSTRACT: Improvement in animal disease control and prevention is dependent on several factors including farmers' uptake of new technologies and skills, particularly in developing countries. Extension is the means by which information about these technologies and skills is delivered to farmers, in order that they can use this knowledge to improve farming practices and their quality of life. This implies a shift from traditional methods to new science-based methods of production. However, in many developing countries farmers are illiterate and unable to understand written outcomes of scientific research. This paper summarizes approaches to communicate epidemiological findings and reports on experiences obtained from a research project in Myanmar, where results from epidemiological field investigations and intervention studies were 'translated' in an understandable manner to village communities. Rural chicken farmers were the central focus of this extension work and simple and sustainable methods to improve the health and production of scavenging chicken flocks were promoted. Unique extension materials transformed scientific outputs published in international journals into clear pictographic messages comprehendible by villagers, while maintaining country-specific, traditional, religious and public perspectives. Benefits, difficulties and pitfalls in using extension methods to communicate advice on preventive veterinary medicine measures in different cross-cultural settings are discussed and guidelines on how to distribute epidemiological research results to illiterate farmers are provided.
    SpringerPlus 01/2014; 3:726. DOI:10.1186/2193-1801-3-726
  • [Show abstract] [Hide abstract]
    ABSTRACT: The propagation of herpesvirus genomes as infectious bacterial artificial chromosomes (iBAC) has enabled the application of highly efficient strategies to investigate gene function across the genome. One of these strategies, transposition, has been used successfully on a number of herpesvirus iBACs to generate libraries of gene disruption mutants. Gene deletion studies aimed at determining the dispensable gene repertoire of the Meleagrid herpesvirus 1 (MeHV-1) genome to enhance the utility of this virus as a vaccine vector have been conducted in this report. A MeHV-1 iBAC was used in combination with the Tn5 and MuA transposition systems in an attempt to generate MeHV-1 gene interruption libraries. However, these studies demonstrated that Tn5 transposition events into the MeHV-1 genome occurred at unexpectedly low frequencies. Furthermore, characterization of genomic locations of the rare Tn5 transposon insertion events indicated a nonrandom distribution within the viral genome, with seven of the 24 insertions occurring within the gene encoding infected cell protein 4. Although insertion events with the MuA system occurred at higher frequency compared with the Tn5 system, fewer insertion events were generated than has previously been reported with this system. The characterization and distribution of these MeHV-1 iBAC transposed mutants is discussed at both the nucleotide and genomic level, and the properties of the MeHV-1 genome that could influence transposition frequency are discussed.
    Avian Diseases 06/2013; 57(2 Suppl):380-6. DOI:10.1637/10339-082912-Reg.1 · 1.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nipah virus (NiV) (Genus Henipavirus) is a recently emerged zoonotic virus that causes severe disease in humans and has been found in bats of the genus Pteropus. Whilst NiV has not been detected in Australia, evidence for NiV-infection has been found in pteropid bats in some of Australia's closest neighbours. The aim of this study was to determine the occurrence of henipaviruses in fruit bat (Family Pteropodidae) populations to the north of Australia. In particular we tested the hypothesis that Nipah virus is restricted to west of Wallace's Line. Fruit bats from Australia, Papua New Guinea, East Timor and Indonesia were tested for the presence of antibodies to Hendra virus (HeV) and Nipah virus, and tested for the presence of HeV, NiV or henipavirus RNA by PCR. Evidence was found for the presence of Nipah virus in both Pteropus vampyrus and Rousettus amplexicaudatus populations from East Timor. Serology and PCR also suggested the presence of a henipavirus that was neither HeV nor NiV in Pteropus alecto and Acerodon celebensis. The results demonstrate the presence of NiV in the fruit bat populations on the eastern side of Wallace's Line and within 500 km of Australia. They indicate the presence of non-NiV, non-HeV henipaviruses in fruit bat populations of Sulawesi and Sumba and possibly in Papua New Guinea. It appears that NiV is present where P. vampyrus occurs, such as in the fruit bat populations of Timor, but where this bat species is absent other henipaviruses may be present, as on Sulawesi and Sumba. Evidence was obtained for the presence henipaviruses in the non-Pteropid species R. amplexicaudatus and in A. celebensis. The findings of this work fill some gaps in knowledge in geographical and species distribution of henipaviruses in Australasia which will contribute to planning of risk management and surveillance activities.
    PLoS ONE 04/2013; 8(4):e61316. DOI:10.1371/journal.pone.0061316 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A cost-benefit analysis using deterministic and stochastic modelling was conducted to identify the net benefits for households that adopt (1) vaccination of individual birds against Newcastle disease (ND) or (2) improved management of chick rearing by providing coops for the protection of chicks from predation and chick starter feed inside a creep feeder to support chicks' nutrition in village chicken flocks in Myanmar. Partial budgeting was used to assess the additional costs and benefits associated with each of the two interventions tested relative to neither strategy. In the deterministic model, over the first 3 years after the introduction of the interventions, the cumulative sum of the net differences from neither strategy was 13,189Kyat for ND vaccination and 77,645Kyat for improved chick management (effective exchange rate in 2005: 1000Kyat=1$US). Both interventions were also profitable after discounting over a 10-year period; Net Present Values for ND vaccination and improved chick management were 30,791 and 167,825Kyat, respectively. The Benefit-Cost Ratio for ND vaccination was very high (28.8). This was lower for improved chick management, due to greater costs of the intervention, but still favourable at 4.7. Using both interventions concurrently yielded a Net Present Value of 470,543Kyat and a Benefit-Cost Ratio of 11.2 over the 10-year period in the deterministic model. Using the stochastic model, for the first 3 years following the introduction of the interventions, the mean cumulative sums of the net difference were similar to those values obtained from the deterministic model. Sensitivity analysis indicated that the cumulative net differences were strongly influenced by grower bird sale income, particularly under improved chick management. The effects of the strategies on odds of households selling and consuming birds after 7 months, and numbers of birds being sold or consumed after this period also influenced profitability. Cost variations for equipment used under improved chick management were not markedly associated with profitability. Net Present Values and Benefit-Cost Ratios discounted over a 10-year period were also similar to the deterministic model when mean values obtained through stochastic modelling were used. In summary, the study showed that ND vaccination and improved chick management can improve the viability and profitability of village chicken production in Myanmar.
    Preventive Veterinary Medicine 02/2013; 110(3-4). DOI:10.1016/j.prevetmed.2013.01.005 · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine the pathobiology of Indonesian H5N1 highly pathogenic avian influenza, two viruses representing clades 2.1.1 and 2.1.3 were inoculated into broiler chickens and Pekin ducks via the eyes, nostrils and oropharynx. In chickens, both viruses produced fulminant disease; tissue tropism was broad but predominantly endothelial and viral loads in tissues were high. Except for one case of meningoencephalitis, the infection in ducks was sub-clinical, leading only to seroconversion. In these ducks, virus and viral antigen occurred in lower amounts, mainly in the respiratory tract (airsac and sinuses), prior to day 7 after inoculation. During clinical disease, chickens shed high virus titres orally and cloacally. Ducks intermittently shed low virus titres from the oral route for up to 8 days post-inoculation. We discuss the significance of the data for understanding the pathogenesis and pathobiology of Indonesian H5N1 in chickens and ducks.
    Comparative immunology, microbiology and infectious diseases 01/2013; DOI:10.1016/j.cimid.2012.12.001 · 2.11 Impact Factor
  • 12/2012; 10(4):169-176. DOI:10.4308/hjb.19.4.169
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ducks are considered to play a major role in the spread of highly pathogenic avian influenza (HPAI) H5N1 in Viet Nam, but detailed information on their management is limited. We distinguished two different systems (1) stationary duck flocks that are not commonly driven to rice fields beyond village boundaries and that are confined overnight on farms and (2) moving duck flocks that are intentionally driven to rice fields beyond village boundaries, that are not returning to home farms for extended periods and that are housed overnight in temporary enclosures in rice paddies. A total of 115 stationary and 22 moving flock farmers were interviewed in 2007 in the Mekong Delta of Viet Nam. Moving duck flocks are larger than stationary flocks, which is indicative of their more commercial production. Moving flock farmers apparently are more aware of HPAI risks than stationary flock farmers, as their flocks are more likely fully vaccinated and have less contact with chickens during scavenging. On the other hand, the spread of HPAI virus between birds might be promoted by moving duck flocks as they repeatedly use transport vehicles and numerous rice paddies for scavenging and are often visited by hatchery owners in the field for purchasing duck eggs. In addition, long distances travelled by moving duck flocks might also result in widespread dissemination of HPAI virus. Further studies are necessary to describe HPAI prevalence and travel patterns of moving duck flocks and to explore the moving duck flock network in detail.
    Tropical Animal Health and Production 10/2012; 45(3). DOI:10.1007/s11250-012-0296-9 · 0.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: To determine the prevalence of koala retrovirus (KoRV) in selected koala populations and to estimate proviral copy number in a subset of koalas. METHODS: Blood or tissue samples from 708 koalas in Queensland, New South Wales, Victoria and South Australia were tested for KoRV pol provirus gene using standard polymerase chain reaction (PCR), nested PCR and real-time PCR (qPCR). RESULTS: Prevalence of KoRV provirus-positive koalas was 100% in four regions of Queensland and New South Wales, 72.2% in mainland Victoria, 26.6% on four Victorian islands and 14.8% on Kangaroo Island, South Australia. Estimated proviral copy number per cell in four groups of koalas from Queensland and Victoria showed marked variation, ranging from a mean of 165 copies per cell in the Queensland group to 1.29 x 10(-4) copies per cell in one group of Victorian koalas. CONCLUSIONS: The higher prevalence of KoRV-positive koalas in the north of Australia and high proviral loads in Queensland koalas may indicate KoRV entered and became endogenous in the north and is spreading southwards. It is also possible there are genetic differences between koalas in northern and southern Australia that affect susceptibility to KoRV infection or endogenisation, or that environmental factors affecting transmission in northern states are absent or uncommon in southern regions. Although further studies are required, the finding of proviral copy numbers orders of magnitude lower than what would be expected for the presence of a single copy in every cell for many Victorian animals suggests that KoRV is not endogenous in these animals and likely reflects ongoing exogenous infection.
    Australian Veterinary Journal 10/2012; 90(10-10):404-9. doi: 10.1111/j.1751-0813.2012.00964.x. Epub 2012 Jul 24.. DOI:10.1111/j.1751-0813.2012.00964.x · 1.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Chicken red blood cells (RBCs) are commonly used in hemagglutination inhibition (HI) tests to measure hemagglutinating antibodies against influenza viruses. The use of horse RBCs in the HI test can reportedly increase its sensitivity when testing human sera for avian influenza antibodies. This study aims to compare the proportion of positives detected and the agreement between two HI tests using either chicken or horse red blood cells for antibody detection in sera of ducks experimentally infected or naturally exposed to Indonesian H5 subtype avian influenza virus. In addition, comparison with a virus neutralisation (VN) test was conducted with the experimental sera. Results: In the experimental study, the proportion of HI antibody-positive ducks increased slightly, from 0.57 when using chicken RBCs to 0.60 when using horse RBCs. The HI tests indicated almost perfect agreement (kappa = 0.86) when results were dichotomised (titre ≥ 4 log2), and substantial agreement (weighted kappa = 0.80) for log titres. Overall agreements between the two HI tests were greater than between either of the HI tests and the VN test. The use of horse RBCs also identified a higher proportion of antibody positives in field duck sera (0.08, compared to chicken RBCs 0.02), with also almost perfect agreements for dichotomized results (Prevalence and bias adjusted Kappa (PABAK) = 0.88) and for log titres (weighted PABAK = 0.93), respectively. Factors that might explain observed differences in the proportion of antibody-positive ducks and in the agreements between HI tests are discussed. Conclusion: In conclusion, we identified a good agreement between HI tests. However, when horse RBCs were used, a higher proportion of sera was positive (titre ≥ 4 log2) than using chicken RBCs, especially during the early response against H5N1 virus. The HRBC-HI might be more responsive in identifying early H5N1 HPAI serological response and could be a recommended assay for avian influenza sero-surveillance in both wild and domestic birds.
    BMC Veterinary Research 07/2012; 8:117. · 1.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Chicken red blood cells (RBCs) are commonly used in hemagglutination inhibition (HI) tests to measure hemagglutinating antibodies against influenza viruses. The use of horse RBCs in the HI test can reportedly increase its sensitivity when testing human sera for avian influenza antibodies. This study aims to compare the proportion of positives detected and the agreement between two HI tests using either chicken or horse red blood cells for antibody detection in sera of ducks experimentally infected or naturally exposed to Indonesian H5 subtype avian influenza virus. In addition, comparison with a virus neutralisation (VN) test was conducted with the experimental sera. Results In the experimental study, the proportion of HI antibody-positive ducks increased slightly, from 0.57 when using chicken RBCs to 0.60 when using horse RBCs. The HI tests indicated almost perfect agreement (kappa = 0.86) when results were dichotomised (titre ≥ 4 log2), and substantial agreement (weighted kappa = 0.80) for log titres. Overall agreements between the two HI tests were greater than between either of the HI tests and the VN test. The use of horse RBCs also identified a higher proportion of antibody positives in field duck sera (0.08, compared to chicken RBCs 0.02), with also almost perfect agreements for dichotomized results (Prevalence and bias adjusted Kappa (PABAK) = 0.88) and for log titres (weighted PABAK = 0.93), respectively. Factors that might explain observed differences in the proportion of antibody-positive ducks and in the agreements between HI tests are discussed. Conclusion In conclusion, we identified a good agreement between HI tests. However, when horse RBCs were used, a higher proportion of sera was positive (titre ≥ 4 log2) than using chicken RBCs, especially during the early response against H5N1 virus. The HRBC-HI might be more responsive in identifying early H5N1 HPAI serological response and could be a recommended assay for avian influenza sero-surveillance in both wild and domestic birds.
    BMC Veterinary Research 07/2012; 8(1):117. DOI:10.1186/1746-6148-8-117 · 1.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARYA prospective longitudinal study was conducted on 96 smallholder duck farms in Indonesia over a period of 14 months in 2007 and 2008 to monitor bird- and flock-level incidence rates of H5 highly pathogenic avian influenza (HPAI) infection in duck flocks, and to identify risk factors associated with these flocks becoming H5 seropositive. Flocks that scavenged around neighbouring houses within the village were at increased risk of developing H5 antibodies, as were flocks from which carcases of birds that died during the 2 months between visits were consumed by the family. Duck flock confinement overnight on the farm and sudden deaths of birds between visits were associated with lower risk of the flock developing H5 antibodies. Scavenging around neighbouring houses and non-confinement overnight are likely to be causal risk factors for infection. With this study we have provided insights into farm-level risk factors of HPAI virus introduction into duck flocks. Preventive messages based on these risk factors should be included in HPAI awareness programmes.
    Epidemiology and Infection 06/2012; 141(2):1-12. DOI:10.1017/S0950268812001100 · 2.49 Impact Factor

Publication Stats

884 Citations
188.42 Total Impact Points

Institutions

  • 2002–2014
    • University of Queensland 
      • School of Veterinary Science
      Brisbane, Queensland, Australia
  • 1997–2002
    • Massey University
      • Institute of Veterinary, Animal and Biomedical Sciences
      Palmerston North, Manawatu-Wanganui, New Zealand