Jimmy J Mao

The Ohio State University, Columbus, Ohio, United States

Are you Jimmy J Mao?

Claim your profile

Publications (2)7.27 Total impact

  • Ronald X Xu · Bo Qiang · Jimmy J Mao · Stephen P Povoski ·
    [Show abstract] [Hide abstract]
    ABSTRACT: A handheld near-infrared imager was developed for real-time monitoring of tissue physiologic changes in response to dynamic compression stimuli. Both 2D and 3D imaging schemas were developed for reconstruction of tissue heterogeneities based on optical measurements. The handheld imager and the dynamic imaging schema were validated on both benchtop phantoms and in vivo human tissues. The benchtop tests demonstrated that the imager was able to reconstruct absorption properties of the embedded heterogeneity with accuracy and repeatability. The tests on in vivo human tissues demonstrated that the imager was able to generate various dynamic loading profiles with reproducibility and to detect tissue optical, mechanical, and physiologic changes under the dynamic loading condition.
    Applied Optics 11/2007; 46(30):7442-51. DOI:10.1364/AO.46.007442 · 1.78 Impact Factor
  • Source
    Ronald X Xu · Donn C Young · Jimmy J Mao · Stephen P Povoski ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Characterizing and differentiating between malignant tumors, benign tumors, and normal breast tissue is increasingly important in the patient presenting with breast problems. Near-infrared diffuse optical imaging and spectroscopy is capable of measuring multiple physiologic parameters of biological tissue systems and may have clinical applications for assessing the development and progression of neoplastic processes, including breast cancer. The currently available application of near-infrared imaging technology for the breast, however, is compromised by low spatial resolution, tissue heterogeneity, and interpatient variation. We tested a dynamic near-infrared imaging schema for the characterization of suspicious breast lesions identified on diagnostic clinical ultrasound. A portable handheld near-infrared tissue imaging device (P-Scan; ViOptix Inc., Fremont, CA, USA) was utilized. An external mechanical compression force was applied to breast tissue. The tissue oxygen saturation and hemoglobin concentration were recorded simultaneously by the handheld near-infrared imaging device. Twelve categories of dynamic tissue parameters were derived based on real-time measurements of the tissue hemoglobin concentration and the oxygen saturation. Fifty suspicious breast lesions were evaluated in 48 patients. Statistical analyses were carried out on 36 out of 50 datasets that satisfied our inclusion criteria. Suspicious breast lesions identified on diagnostic clinical ultrasound had lower oxygenation and higher hemoglobin concentration than the surrounding normal breast tissue. Furthermore, histopathologic-proven malignant breast tumors had a lower differential hemoglobin contrast (that is, the difference of hemoglobin concentration variability between the suspicious breast lesion and the normal breast parenchyma located remotely elsewhere within the ipsilateral breast) as compared with histopathologic-proven benign breast lesions. The proposed dynamic near-infrared imaging schema has the potential to differentiate benign processes from those of malignant breast tumors. Further development and refinement of the dynamic imaging device and additional subsequent clinical testing are necessary for optimizing the accuracy of detection.
    Breast cancer research: BCR 02/2007; 9(6):R88. DOI:10.1186/bcr1837 · 5.49 Impact Factor