Are you Jennifer R Cheung?

Claim your profile

Publications (6)20.33 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The in vitro micronucleus assay with TK6 cells is frequently used as part of the genotoxicity testing battery for pharmaceuticals. Consequently, follow-up testing strategies are needed for positive compounds to determine their mode of action, which would then allow for deployment of appropriate in vivo follow-up strategies. We have chosen 3 micronucleus positive compounds, the clastogen etoposide, the aneugen noscapine and the cytotoxicant tunicamycin to evaluate different approaches to determine their aneugenic or clastogenic properties. Each of the three compounds were evaluated following 4 and 24 h of continuous treatment by flow cytometry for micronucleus induction, the aneugenicity markers phosphorylated-histone 3 (p-H3) and polyploidy, the clastogenicity marker γH2AX and the apoptosis marker cleaved caspase 3. They were further evaluated by Western blot for mono-ubiquitinated and γH2AX. Results show that the clastogen etoposide produced a dose related increase in γH2AX and mono-ubiquitinated H2AX and a dose related decrease in p-H3 positive mitotic cells. Conversely, the aneugen produced increases in p-H3 and polyploidy with no significant increases seen in mono-ubiquitinated H2AX or γH2AX. Lastly, the cytotoxicant tunicamycin induced neither an increase in p-H3 nor γH2AX. All three compounds produced dose-related increases in cleaved caspase 3. The results from this study provide evidence that adding clastogenicity and aneugenicity markers to the in vitro micronucleus assay in TK6 cells could help to identify the mode of action of positive compounds. The combination of endpoints suggested here needs to be further evaluated by a broader set of test compounds.
    Mutation Research/Genetic Toxicology and Environmental Mutagenesis 11/2014; · 2.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Organization for Economic Co-operation and Development (OECD) has recently adopted Test Guideline 487 (TG487) for conducting the in vitro micronucleus (MNvit) assay. The purpose of this study is to evaluate and validate treatment conditions for the use of p53 competent TK6 human lymphoblastoid cells in a TG487 compliant MNvit assay. The ten reference compounds suggested in TG487 (mitomycin C, cytosine arabinoside, cyclophosphamide, benzo-a-pyrene, vinblastine sulphate, colchicine, sodium chloride, nalidixic acid and di(2-ethylhexyl)phthalate and pyrene) and noscapine hydrochloride were chosen for this study. In order to optimize the micronucleus response after treatment with some positive substances, we extended the recovery time after pulse treatment from 2 cell cycles recommended in TG487 to 3 cell cycles for untreated cells (40h). Each compound was tested in at least one of four exposure conditions: a 4h exposure followed by a 40h recovery, a 4h exposure followed by a 24h recovery, a 4h exposure in the presence of an exogenous metabolic activation system followed by a 40h recovery period, and a 27h continuous direct treatment. Results show that the direct acting clastogens, clastogens requiring metabolic activation and aneugens caused a robust increase in micronuclei in at least one test condition whereas the negative compounds did not induce micronuclei. The negative control cultures exhibited reproducibly low and consistent micronucleus frequencies ranging from 0.4 to 1.8% (0.8±0.3% average and standard deviation). Furthermore, extending the recovery period from 24h to 40h produced a 2-fold higher micronucleus frequency after a 4h pulse treatment with mitomycin C. In summary, the protocol described in this study in TK6 cells produced the expected result with model compounds and should be suitable for performing the MNvit assay in accordance with guideline TG487.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 03/2012; 746(1):29-34. · 4.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The in vitro micronucleus assay has been extensively used as an in vitro screening tool to identify test articles that might have aneugenic or clastogenic potential. Currently, the Organization for Economic Co-operation and Development (OECD) is working towards a final version of the guideline for the conduct of the in vitro mammalian cell micronucleus Test (MNvit). A few questions regarding appropriate cytotoxicity measurements and cytotoxicity limits to use remain to be answered. In order to resolve the remaining questions, we compared the induction of micronuclei at the top dose (50-60% cytotoxicity) determined by either Relative Cell Counts (RCC), Relative Increase in Cell Counts (RICC), Relative Population Doublings (RPD), or Cytokinesis-Blocked Proliferating Index (CBPI) using weak and strong inducers of micronuclei in both the presence and absence of cytochalasin B (CYB) in Chinese hamster ovary (CHO) and human lymphoblastoid TK6 cells. In order to assess extensive dose-response relationships, we selected expected weak (diazepam, phenolphthalein, quinacrine dihydrochloride dihydrate) and strong (cytosine arabinoside, mitomycin C, vinblastine sulphate) inducers of micronuclei with a variety of different mechanisms of action for testing. The results clearly demonstrated that all six compounds produced positive responses using either cytotoxicity measurement. The outcome from these studies further supports the cytotoxicity measurements and cytotoxicity limits proposed in the draft OECD guideline.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 10/2010; 702(2):219-29. · 4.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here, we describe the development and evaluation of a novel bioluminescent high-throughput Salmonella reverse mutation assay applicable to the screening of large numbers of small molecules. The bioluminescent Salmonella assay utilizes genetically engineered standard Salmonella tester strains TA98 and TA100 expressing the lux(CDABE) operon from Xenorhabdus luminescence. In principle, the assay employs bioluminescence as a sensor of changes in bacterial metabolism associated with starvation or energy depletion effectively identifying colonies of histidine-independent revertant cells in a high-throughput fashion. The assay provides highly concordant data with the outcome in the standard Salmonella plate incorporation reverse mutation assay. Since the results of the standard Salmonella plate assay are required by various regulatory agencies for approval of new drugs, the bioluminescent Salmonella assay can be effectively used for prioritization of compounds in pharmaceutical drug discovery as well as the evaluation of environmental and industrial chemicals. Because of its high throughput attributes, the assay permits effective, fast and economical screening of a large series of structural analogs enabling the investigation of structure-activity relationships.
    Mutagenesis 10/2007; 22(5):335-42. · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Low level impurities often reside in active pharmaceutical ingredients (API). Some of these impurities are potentially genotoxic since reactive intermediates are used in the synthetic route for the production of API. Routine mutagenicity testing is conducted in support of clinical trials with the intent to identify genotoxic hazards associated with API. Depending on the amount of impurity present in the API tested, the potency of the impurities and the relative sensitivity of the Ames assay, it is possible that mutagenicity associated with the presence of genotoxic impurities could also be detected while testing API. Therefore, we evaluated published data and generated new information to understand the sensitivity of the Ames assay. Based on a literature survey of approximately 450 mutagens, it was estimated that 85% of mutagens are detected at concentrations of 250 microg/plate or less. Based on this estimate, most mutagens should be detected in an Ames assay testing API concentrations up to 5000 microg/plate if present at a 5% or greater concentration. Data from experiments where several direct and indirect-acting mutagens were spiked into representative API further support the literature-based evaluation. Some limitations of this approach, including toxicity of API and competing metabolism are discussed.
    Regulatory Toxicology and Pharmacology 07/2007; 48(1):75-86. · 2.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 2-(3-Chlorobenzyloxy)-6-(piperazin-1-yl)pyrazine (3) is a potent and selective 5-HT(2C) agonist that exhibits dose-dependent inhibition of food intake and reduction in body weight in rats, making it an attractive candidate for treatment of obesity. However, examination of the genotoxicity potential of 3 in the Salmonella Ames assay using tester strains TA98, TA100, TA1535, and TA1537 revealed a metabolism (rat S9/NADPH)- and dose-dependent increase of reverse mutations in strains TA100 and TA1537. The increase in reverse mutations was attenuated upon coincubation with methoxylamine and glutathione. The irreversible and concentration-dependent incorporation of radioactivity in calf thymus DNA after incubations with [14C]3 in the presence of rat S9/NADPH suggested that 3 was bioactivated to a reactive intermediate that covalently bound DNA. In vitro metabolism studies on 3 with rat S9/NADPH in the presence of methoxylamine and cyanide led to the detection of amine and cyano conjugates of 3. The mass spectrum of the amine conjugate was consistent with condensation of amine with an aldehyde metabolite derived from hydroxylation of the secondary piperazine nitrogen-alpha-carbon bond. The mass spectrum of the cyano conjugate suggested a bioactivation pathway involving N-hydroxylation of the secondary piperazine nitrogen followed by two-electron oxidation to generate an electrophilic nitrone, which reacted with cyanide. The 3-chlorobenzyl motif in 3 was also bioactivated via initial aromatic ring hydroxylation followed by elimination to a quinone-methide species that reacted with glutathione or with the secondary piperazine ring nitrogen in 3 and its monohydroxylated metabolite(s). The metabolism studies described herein provide a mechanistic basis for the mutagenicity of 3.
    Drug Metabolism and Disposition 07/2007; 35(6):848-58. · 3.33 Impact Factor