Are you Jean A Petershack?

Claim your profile

Publications (3)12.21 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The goal was to study the pulmonary, biochemical, and morphologic effects of a persistent patent ductus arteriosus in a preterm baboon model of bronchopulmonary dysplasia. Preterm baboons (treated prenatally with glucocorticoids) were delivered at 125 days of gestation (term: 185 days), given surfactant, and ventilated for 14 days. Twenty-four hours after birth, newborns were randomly assigned to receive either ibuprofen (to close the patent ductus arteriosus; n = 8) or no drug (control; n = 13). After treatment was started, the ibuprofen group had significantly lower pulmonary/systemic flow ratio, higher systemic blood pressure, and lower left ventricular end diastolic diameter, compared with the control group. There were no differences in cardiac performance indices between the groups. Ventilation index and dynamic compliance were significantly improved with ibuprofen. The improved pulmonary mechanics in ibuprofen-treated newborns were not attributable to changes in levels of surfactant protein B, C, or D, saturated phosphatidylcholine, or surfactant inhibitory proteins. There were no differences in tracheal concentrations of cytokines commonly associated with the development of bronchopulmonary dysplasia. The groups had similar messenger RNA expression of genes that regulate inflammation and remodeling in the lung. Lungs from ibuprofen-treated newborns were significantly drier (lower wet/dry ratio) and expressed 2.5 times more epithelial sodium channel protein than did control lungs. By 14 days after delivery, control newborns had morphologic features of arrested alveolar development (decreased alveolar surface area and complexity), compared with age-matched fetuses. In contrast, there was no evidence of alveolar arrest in the ibuprofen-treated newborns. Ibuprofen-induced patent ductus arteriosus closure improved pulmonary mechanics, decreased total lung water, increased epithelial sodium channel expression, and decreased the detrimental effects of preterm birth on alveolarization.
    PEDIATRICS 06/2008; 121(5):945-56. · 4.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A major mechanism for Na+ transport across epithelia occurs through epithelial Na+ channels (ENaC). ENaC is a multimeric channel consisting of three subunits (alpha, beta, and gamma). The alpha-subunit is critical for ENaC function. In specific culture conditions, the rat submandibular gland epithelial cell line (SMG-C6) demonstrates minimal Na+ transport properties and exposure to dibutyryl cAMP (DbcAMP) for up to 48 h caused an elevation of alpha-ENaC mRNA and protein expression and amiloride-sensitive short-circuit current (I(SC)). Here we examined the early signaling pathways evoked by DbcAMP which contribute to the eventual increase in Na+ transport is present. Treatment with either of the protein kinase A (PKA) inhibitors KT5720 or H-89 followed by exposure to 1 mM DbcAMP for 24 h markedly attenuated DbcAMP-induced alpha-ENaC protein formation and I(SC). Exposure of SMG-C6 cells to 1 mM DbcAMP induced a rapid, transient phosphorylation of the cAMP response element binding protein (CREB). This response was attenuated in the presence of either KT5720 or H-89. Dominant-negative CREB decreased DbcAMP-induced alpha-ENaC expression. Suppression of the extracellular signal-regulated protein kinase (ERK 1,2) with PD98059 or the p38 mitogen-activated protein kinase (MAPK) pathway with SB203580 reduced DbcAMP-induced alpha-ENaC protein levels in SMG-C6 cells. DbcAMP-induced phosphorylation of CREB was markedly attenuated by PD98059 or SB203580. DbcAMP-induced activation of the either the p38 or the ERK 1,2 MAPK pathways was abolished by either of the PKA inhibitors, H-89 or KT5720. Cross talk between these signaling pathways induced by DbcAMP via the activation of CREB appears to contribute to increased levels of alpha-ENaC observed after 24 h of treatment in SMG-C6 epithelial cells.
    Journal of Cellular Physiology 05/2008; 215(1):101-10. · 4.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: At birth, lung fluid clearance is coupled to Na+ transport through epithelial Na+ channels (ENaC) in the distal lung epithelium. We evaluated the effect of postnatal glucocorticoids (GC) on lung alpha-ENaC expression in preterm 29-day gestational age (GA) fetal rabbits. Postnatal treatment of 29-day GA fetuses with 0.5 mg/kg of dexamethasone (Dex) iv resulted in a 2- and 22-fold increase in lung alpha-ENaC mRNA expression compared with saline-treated fetuses after 8 and 16 h, respectively. Lung alpha-ENaC protein levels in Dex-treated fetuses were also elevated compared with saline-treated counterparts. The extravascular lung water (EVLW)/dry lung tissue weight ratios of 29-day GA fetuses treated with either saline or Dex decreased over 24 h compared with that observed at birth; however, at 24 h, the EVLW/dry lung tissue weight ratios of saline- and Dex-treated fetuses were similar. Dex-induced alpha-ENaC mRNA and protein levels were attenuated by glucocorticoid receptor (GCR) antagonist RU-486 in fetal distal lung epithelial cells isolated from 29-day GA fetuses, indicating that GC-dependent augmentation of lung alpha-ENaC requires the presence of functional GCR. Lung GCR mRNA expression and protein levels were elevated in 29-day GA fetuses compared with fetuses at earlier GA. Exposure of 29-day GA fetuses to Dex for 16 h caused a 2.1-fold increase in lung GCR mRNA expression, but GCR protein levels were decreased in Dex-treated fetuses after 24 h. We conclude that postnatal treatment of preterm 29-day GA fetal rabbits with GC results in an elevation of lung alpha-ENaC accompanied by an autoregulation of pulmonary GCR.
    AJP Lung Cellular and Molecular Physiology 02/2004; 286(1):L73-80. · 3.52 Impact Factor