J H Bahn

Hallym University, Seoul, Seoul, South Korea

Are you J H Bahn?

Claim your profile

Publications (25)62.49 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: In the present study, we investigated the temporal and spatial alterations of ceruloplasmin immunoreactivity in the gerbil hippocampus and dentate gyrus after 5 min transient forebrain ischemia. In sham-operated animals, ceruloplasmin immunoreactivity in the hippocampal CA2/3 areas was higher than that of other areas. Ceruloplasmin immunoreactivity and its protein content significantly increased and were highest in the CA1 area 1 day after ischemia-reperfusion. At this time point, the immunoreactivity was shown in pyramidal cells of the CA1 area. Four days after ischemia-reperfusion, ceruloplasmin immunoreactivity was shown in astrocytes in the hippocamapal CA1 area. These results suggest that reactive oxygen species (ROS) do not immediately damage neuronal cytosol, unlike DNA. An interval of time is required for the full expression of the cytoplasmic protein injury by ROS. This delayed neuronal injury 1 day after ischemic insult might provide a window of opportunity for therapeutic interventions using antioxidants.
    Neurochemistry International 07/2004; 44(8):601-7. · 2.66 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Five monoclonal antibodies (mAbs) that recognize human glutamate dehydrogenase (GDH) have been selected and designated as monoclonal antibodies hGDH60-6, hGDH60-8, hGDH63-10, hGDH63-11, and hGDH91-14. A total of five mAbs recognizing different epitopes of the enzyme were obtained, two of which inhibited human GDH activity. When total proteins of human homogenate separated by SDS- PAGE, were probed with mAbs, a single reactive protein band of 55 kDa, which co-migrated with purified recombinant human GDH was detected. When the purified GDH was incubated with each of the mAbs, its enzyme activity was inhibited by up to 58%. Epitope mapping analysis identified, two subgroups of mAbs recognizing different peptide fragments. Using the individual anti-GDH antibodies as probes, the cross reactivities of brain GDH obtained from human and other animal brain tissues were investigated. For the human and animal tissues tested, immunoreactive bands on Western blots appeared to have the same molecular mass of 55 kDa when hGHD60-6, hGHD60-8, or hGHD91-14 mAbs were used as probes. However, the anti-human GDH mAbs immunoreactive to bands on Western blots reacted differently on the immunoblots of the other animal brains tested, i.e., the two monoclonal antibodies hGDH63-10 and hGDH63-11 only produced positive results for human. These results suggest that human brain GDH is immunologically distinct from those of other mammalian brains. Thorough characterization of these anti-human GDH mAbs could provide potentially valuable tool as immunodiagnostic reagents for the detection, identification and characterization of the various neurological diseases related to the GDH enzyme.
    Experimental and Molecular Medicine 09/2003; 35(4):249-56. · 2.57 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: To identify the roles of pyridoxal kinase (PLK) in epileptogenesis and the recovery mechanisms in spontaneous seizure, a chronological and comparative analysis of PLK expression in the gerbil hippocampus was conducted. PLK immunoreactivity in a pre-seizure group of seizure sensitive (SS) gerbils was more strongly detected than that in a seizure resistant (SR) group. The density of PLK immunoreactivity in a 30-min postictal group was significantly lower than that of a pre-seizure group. In a 12 h postictal group, PLK immunodensity recovered to pre-seizure level. The over-expression of PLK in the hippocampus of pre-seizure SS gerbils suggests that PLP play an important role in the modulation of GAD activity and GABA reuptake as mediated by membrane transporter via neurons.
    Brain Research 01/2003; 957(2):242-50. · 2.88 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: To identify the roles of pyridoxine-5'-phosphate (PNP) oxidase in epileptogenesis and the recovery mechanisms in spontaneous seizure, a chronological and comparative analysis of PNP oxidase expression was conducted. PNP oxidase immunoreactivity in a preseizure group of seizure-sensitive (SS) gerbils was detected more strongly than that in a seizure-resistant (SR) group. The density of PNP oxidase immunoreactivity in a 30 min postictal group was significantly lower than that in a preseizure group. In a 12 hr postictal group, PNP oxidase immunodensity had recovered to a preseizure level. The overexpression of PNP oxidase in the hippocampus of preseizure SS gerbils suggests that PNP or pyridoxal 5'-phosphate plays an important role in the modulation of glutamic acid decarboxylase activity and gamma-aminobutyric acid reuptake as mediated by membrane transporter via neurons. In addition, this change in the PNP oxidase immunoreactivity following seizure may be a compensatory response designed to reduce epileptic activity in this animal.
    Journal of Neuroscience Research 07/2002; 68(6):785-91. · 2.97 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The human immunodeficiency virus type 1 (HIV-1) Tat protein transduction domain (PTD), which contains a high proportion of arginine and lysine residues, is responsible for highly efficient protein transduction through the plasma membrane. To identify the role of the PTD sequence motif in transduction, various deletions and substitutions were introduced into the PTD. Tat-green fluorescent protein (GFP) fusion proteins, containing various lengths of the Tat PTD, were expressed and the extent of their transduction into mammalian cells was analysed by Western blot analysis and fluorescence microscopy. Deletion analysis of PTD mapped to a nine amino acid motif (residues 49-57: RKKRRQRRR) sufficient for transduction. Further deletion of this Tat basic domain either at the N terminus or at the C terminus significantly decreased transduction efficiency. The transduction efficiencies of GFPs fused to nine consecutive lysine (9Lys-GFP) or arginine (9Arg-GFP) residues were similar to that of Tat(49-57)-GFP. The transduced proteins localized to both the nucleus and the cytosol, as assessed by confocal microscopy and Western blot analysis of subcellular fractions from transduced cells. Thus, the availability of recombinant GFP fusion proteins facilitates the simple and specific identification of protein transduction mediated by these peptide sequences. The modified PTD sequences designed in this study may provide useful tools necessary for delivering therapeutic proteins/peptides into cells.
    Journal of General Virology 06/2002; 83(Pt 5):1173-81. · 3.13 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Antioxidant enzymes, such as superoxide dismutase (SOD) and catalase (CAT), have been considered to have a beneficial effect against various diseases that are mediated by the reactive oxygen species (ROS). Although a variety of modified recombinant antioxidant enzymes have been generated to protect against oxidative stresses, the lack of their transduction ability into cells resulted in a limited ability to detoxify intracellular ROS. To render the SOD enzyme capable of detoxifying intracellular ROS when added extracellularly, cell-permeable recombinant SOD proteins were generated. A human Cu,Zn-superoxide dismutase (Cu,Zn-SOD) gene was fused with a gene fragment that encodes the 9 amino acids Tat protein transduction domain (RKKRRQRRR) of HIV-1 and lysine rich peptide (KKKKKKKKK) in a bacterial expression vector in order to produce a genetic in-frame Tat-SOD and 9Lys-SOD fusion protein, respectively. The expressed and purified Tat-SOD and 9Lys-SOD fusion proteins can transduce into human fibroblast cells, and they were enzymatically active and stable for 24 h. The cell viability of the fibroblast cells that were treated with paraquat, an intracellular superoxide anion generator, was increased by the transduced Tat-SOD or 9Lys-SOD. The transduction efficacy of 9Lys-SOD was more efficient than that of Tat-SOD. We evaluated the ability of the SOD fusion pmteins to transduce into animal skin. This analysis showed that Tat-SOD and 9Lys-SOD fusion proteins efficiently penetrated into the epidermis as well as the dermis of the subcutaneous layer, when sprayed on mice skin (judged by the immunohistochemistry and specific enzyme activities). The enzymatic activity of the transduced 9Lys-SOD was higher than that of Tat-SOD, indicating that the penetration of 9Lys-SOD was more efficient when put into the skin. These results suggest Tat-SOD and 9Lys-SOD fusion proteins can be used as anti-aging cosmetics, or in protein therapy, for various disorders that are related to this antioxidant enzyme and ROS.
    Molecules and Cells 05/2002; 13(2):202-8. · 2.21 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: In previous studies, it has been reported that Purkinje cell degeneration during seizure is evoked by excitotoxicity due to an increase in the intracellular Ca(2+) level, though calbindin D-28k (CB) and parvalbumin (PV), intracellular free calcium buffers, are abundantly colocalized in these cells. In the present study, we investigated the expressions of CB, PV, neurofilament (NF) 68, 150, 200, and polyphosphorylated epitope in NF (RT 97), in the cerebellum of gerbils to identify the mechanism of Purkinje cell damages induced by seizure. In seizure resistant gerbils, nearly all the Purkinje cells showed CB, PA, NF 150, NF 200 and RT 97 immunoreactivity. In SS gerbils, however, a clear decrease in the number of CB(+) and PV(+) Purkinje cells was observed. The NF and RT 97 immunoreactivities, in the Purkinje cells was also lower (except NF 68), but not absent. These results suggest several points. First, the decrease in the concentrations of CB and PV may render the Purkinje cells more susceptible to intermittent Ca(2+) fluctuations and more prone to accumulating intolerable quantities of Ca(2+). Second, during the Ca(2+)-PV interaction PV plays an important role in facilitating donations of Mg(2+), which is a potent enzyme activator in phosphorylation. Thus the decline in PV concentration also implicated the defects of phosphorylation in the NF. Third, increases in both the intracellular Ca(2+) level and dephosphorylation trigger the degradation of the NF, particularly NF 200. Finally, these degradations in the NF induce the functional defects in Purkinje cell, which then cause Purkinje cell degeneration.
    Neurochemistry International 03/2002; 40(2):115-22. · 2.66 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Five monoclonal antibodies that recognize porcine brain myo-inositol monophosphate phosphatase (IMPase) have been selected and designated as mAb IMPP 9, IMPP 10, IMPP 11, IMPP 15, and IMPP 17. These antibodies recognize different epitopes of the enzyme and one of these inhibited the enzyme activity. When the total proteins of the porcine brain homogenate separated by SDS-PAGE were probed with monoclonal antibodies, a single reactive protein band of 29 kDa, co-migrating with the purified porcine brain IMPase, was detected. Using the anti-IMPase antibodies as probes, the cross reactivities of the brain IMPase from human and other mammalian tissues, as well as from avian sources, were investigated. Among the human and animal tissues tested, the immunoreactive bands on Western blots appeared to have the same molecular mass of 29 kDa. In addition, there was IMPase immunoreactivity in the various neuronal populations in the rat brain. These results indicate that mammalian brains contain only one major type of immunologically similar IMPase, although some properties of the enzymes that were previously reported differ from each another. The first demonstration of the IMPase localization in the brain may also provide useful data for future investigations on the function of this enzyme in relation to various neurological diseases.
    Molecules and Cells 03/2002; 13(1):21-7. · 2.21 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A total of six hybridoma cell lines, which produce monoclonal antibodies (mAbs) against the sheep brain pyridoxine-5'-phosphate oxidase (PNP oxidase), were established. Isotype analysis revealed that all antibodies corresponded to the IgG 2B kappa subclass. Immunoblotting with various tissue homogenates indicated that all the mAbs specifically recognize a single protein band of 30 kDa. They also appear to be extensively cross-reactive among different mammalian and avian sources. These results demonstrated that only one type of immunologically similar PNP oxidase is present in all of the mammalian tissues tested. When the purified PNP oxidase was incubated with the mAbs, the enzyme activity was inhibited up to a maximum of 81%. Furthermore, these antibodies were successfully applied in immunohistochemistry in order to detect PNP oxidase in various regions of rat brain tissues. The immunoreactive neurons in PNP oxidase were found in cerebellar cortex, hippocampus, amygdala, paraventricular nucleus, cerebral cortex and ependyma. This result suggests that PNP oxidase may play an important role in the neuronal metabolism.
    Brain Research 02/2002; 925(2):159-68. · 2.88 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) have been considered to have a beneficial effect against various diseases mediated by reactive oxygen species (ROS). Although a variety of modified recombinant antioxidant enzymes have been generated to protect against the oxidative stresses, the lack of their transduction ability into cells resulted in limited ability to detoxify intracellular ROS. To render the catalase enzyme capable of detoxifying intracellular ROS when added extracellularly, cell-permeable recombinant catalase proteins were generated. A human liver catalase gene was cloned and fused with a gene fragment encoding the HIV-1 Tat protein transduction domain (RKKRRQRRR) and arginine-rich peptides (RRRRRRRRR) in a bacterial expression vector to produce genetic in-frame Tat-CAT and 9Arg-CAT fusion proteins, respectively. The expressed and purified fusion proteins can be transduced into mammalian cells (HeLa and PC12 cells) in a time- and dose-dependent manner when added exogenously in culture medium, and transduced fusion proteins were enzymatically active and stable for 60 h. When exposed to H(2)O(2), the viability of HeLa cells transduced with Tat-CAT or 9Arg-CAT fusion proteins was significantly increased. In combination with transduced SOD, transduced catalase also resulted in a cooperative increase in cell viability when the cells were treated with paraquat, an intracellular antioxide anion generator. We then evaluated the ability of the catalase fusion proteins to transduce into animal skin. This analysis showed that Tat-CAT and 9Arg-CAT fusion proteins efficiently penetrated the epidermis as well as the dermis of the subcutaneous layer when sprayed on animal skin, as judged by immunohistochemistry and specific enzyme activities. These results suggest that Tat-CAT and 9Arg-CAT fusion proteins can be used in protein therapy for various disorders related to this antioxidant enzyme.
    Free Radical Biology and Medicine 01/2002; 31(11):1509-19. · 5.27 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Several oligopeptides, derived from certain proteins, translocate as a form fused to small molecules or exogenous proteins across the plasma membrane into cells. Some of these oligopeptides, the so-called protein-transduction domains (PTDs), contain a high proportion of basic residues. The translocation of some of these basic PTDs, such as oligoarginines, has been studied as chemically fused forms to other organic compounds. In this study, we also tested to determine whether or not oligoarginines, when fused genetically to an exogenous protein such as GFP, are also able to translocate efficiently across the plasma membrane. The oligoarginine Rn (n = 5,6,7,8,9)-GFP fusion proteins were translocated quite efficiently, and the transduction efficiency increased in proportion to the number of arginine residues. However, the cellular uptake of the oligolysine-GFP fusion proteins was less efficient than that of the corresponding oligoarginine-GFP fusion proteins. When fused to GFP, the translocation efficiency of R5 was similar to that of Tat(49-57)(RKKRRQRRR). This finding suggests that the arginine homo-oligopeptide is more efficient than other PTDs which contain a mixture of basic residues. On the other hand, both the K9- and Tat(49-57)-GFP fusion proteins were transduced with similar efficiencies. It appears that basic oligopeptides may be useful for the efficient translocation of diverse exogenous proteins as genetically fused forms.
    Molecules and Cells 11/2001; 12(2):267-71. · 2.21 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We isolated a cDNA that encodes the bovine brain gamma-aminobutyrate transaminase (GABA-T; EC 2.6.1.19) from the lambda gt 11 cDNA library, which showed a high degree of sequence similarity to the corresponding enzymes from various sources. Northern blot analysis revealed two differentially expressed GABA-T transcripts of approximately 2.0 and 6.0 kb in the bovine tissues. Southern blot analysis indicates that the two GABA-T transcripts are encoded in a greater-than 10-kb, single-copy gene. Bovine GABA-T cDNA was expressed in E. coli using the pGEX bacterial- expression vector system. The overexpressed GABA-T was enzymatically active after purification, and it had very similar kinetic parameters when compared with those of other mammalian GABA-Ts.
    Molecules and Cells 09/2001; 12(1):91-6. · 2.21 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Gamma-aminobutyric acid (GABA) is the most important inhibitory neurotransmitter in the central nervous system (CNS). Degradation of GABA in the CNS is catalyzed by the action of GABA transaminase (GABA-T). However, the neuroanatomical characteristics of GABA-T in the gerbil, which is a useful experimental animal in neuroscience, are still unknown. Therefore, we performed a comparative analysis of the distribution of GABA-T in rat and gerbil brains using immunohistochemistry. GABA-T immunoreactive neurons were observed in the regions which contained GABAergic neurons of both animals: corpus striatum; substantia nigra, pars reticulata; septal nucleus; and accumbens nucleus. GABA-T + neurons were restricted to layers III and V in the rat. Unlike the rat GABA-T + neurons were observed in layers II, III, and V of the gerbil cerebral cortex. These results suggest that the expression of GABA-T in the gerbil brain may be similar to that in the rat brain, except in the cerebral cortex.
    Molecules and Cells 07/2001; 11(3):321-5. · 2.21 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: It is well established that GABA degradation may play a key role in epileptogenesis. However, whether or not the expression of GABA-transaminase (GABA-T), which catalyzes GABA degradation and participates in the neuronal metabolism via GABA shunt, changes chronologically after on-set of seizure remains to be clarified. To identify the change of GABA-T expression in seizure, GABA-T expression in the gerbil hippocampus, associated with different sequelae of spontaneous seizures, was investigated. The distribution pattern of GABA-T immunoreactive neurons in the hippocampus between the seizure-resistant and pre-seizure group of seizure sensitive gerbils was similar. Interestingly, at 30 min postictal, the enhancement of GABA-T immunoreactivity in the perikarya was apparently observed. This contrasted with the decline in GABA-T immunoreactivity in the granular and pyramidal layer. At 12-24 h postictal, GABA-T immunoreactivity in the hilar neurons had declined significantly. However, the GABA-T immunoreactivity in the granular layer increased. These findings suggest that in the gerbil, the alteration in GABA-T expressions may play an important role in the self-recovery mechanism from seizure attack via both GABA degradation and regulation of neuronal metabolism.
    Neurochemistry International 07/2001; 38(7):609-14. · 2.66 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: An NAD+ dependent succinic semialdehyde dehydrogenase from bovine brain was inactivated by pyridoxal-5'- phosphate. Spectral evidence is presented to indicate that the inactivation proceeds through formation of a Schiff's base with amino groups of the enzyme. After NaBH(4) reduction of the pyridoxal-5'-phosphate inactivated enzyme, it was observed that 3.8 mol phosphopyridoxyl residues were incorporated/enzyme tetramer. The coenzyme, NAD+, protected the enzyme against inactivation by pyridoxal-5'-phosphate. The absorption spectrum of the reduced and dialyzed pyridoxal-5'-phosphate-inactivated enzyme showed a characteristic peak at 325 nm, which was absent in the spectrum of the native enzyme. The fluorescence spectrum of the pyridoxyl enzyme differs completely from that of the native enzyme. After tryptic digestion of the enzyme modified with pyridoxal-5'-phosphate followed by [3H]NaBH4 reduction, a radioactive peptide absorbing at 210 nm was isolated by reverse-phase HPLC. The sequences of the peptide containing the phosphopyridoxyllysine were clearly identical to sequences of other mammalian succinic semialdehyde dehydrogenase brain species including human. It is suggested that the catalytic function of succinic semialdehyde dehydrogenase is modulated by binding of pyridoxal-5'-phosphate to specific Lys(347) residue at or near the coenzyme-binding site of the protein.
    Journal of Neurochemistry 03/2001; 76(3):919-25. · 3.97 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: gamma-Aminobutyric acid-transaminase (GABA-T) plays an important role in the metabolism of GABA, particularly in the neurons or glial cells. The present study was undertaken to determine the alteration of GABA-T expression in the gerbil hippocampus after ischemia-reperfusion. In the sham, GABA-T(+) neurons were scattered in the hippocampus proper and dentate gyrus. The intensity of the GABA-T immunoreactivity had nearly disappeared in the interneurons at 12 h after ischemia. In contrast, 24 h post-ischemia the dramatic augmentation of GABA-T immunoreactivity in the pyramidal cells was observed in the CA1 area but not in the CA2 or CA3 areas. Forty-eight hours after ischemia-reperfusion, its immunoreactivity was preserved in the CA1 neurons. These results suggest that the over-expression of GABA-T in the CA1 area may be related to delayed neuronal death after ischemia-reperfusion insult.
    Neuroscience Letters 12/2000; 294(1):33-6. · 2.03 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Human brain gamma-aminobutyrate transaminase is differentially expressed in a tissue-specific manner. mRNA master dot-blot analysis for 50 different human tissues, including different brain regions and fetal tissues, provided a complete map of the tissue distribution. Genomic Southern analysis revealed that the gamma-aminobutyrate transaminase gene is a single copy, at least 15 kb in size. In addition, human brain gamma-aminobutyrate transaminase cDNA was expressed in Escherichia coli using a pGEX expression vector system. Catalytically active gamma-aminobutyrate transaminase was expressed in large quantities and the purified recombinant enzyme had kinetic parameters that were indistinguishable from those isolated from other mammalian brains. The human enzyme was inactivated by a well-known antiepileptic drug vigabatrin. Values of Ki and kinact were 1 mM and 0.35 min-1, respectively. Results from inactivation kinetics suggested that human gamma-aminobutyrate transaminase is more sensitive to the vigabatrin drug than the enzyme isolated from bovine brain.
    European Journal of Biochemistry 10/2000; 267(17):5601-7. · 3.58 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: 80% Aqueous MeOH extracts from the wood of Caesalpinia sappan, which showed remarkable anticonvulsant activity, were fractionated using EtOAc, n-BuOH, and H2O. Among them, the EtOAc fraction significantly inhibited the activities of two GABA degradative enzymes, succinic semialdehyde dehydrogenase (SSADH) and succinic semialdehyde reductase (SSAR). Repeated column chromatographies for the fraction guided by activity test led to the isolation of the two active principal components. Their chemical structures were determined to be sappanchalcone and brazilin based on spectral data. The pure compounds, sappanchalcone (1) and brazilin (2), inactivated the SSAR activities in a dose dependent manner, whereas SSADH was inhibited partially by sappanchalcone and not by brazilin.
    Archives of Pharmacal Research 09/2000; 23(4):344-8. · 1.54 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The structural differences between two types of glutamate dehydrogenase (GDH) isoproteins (GDH I and GDH II), homogeneously isolated from bovine brain, were investigated using a biosensor technology and monoclonal antibodies. A total of seven monoclonal antibodies raised against GDH II were produced, and the antibodies recognized a single protein band that comigrates with purified GDH II on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot. Of seven anti-GDH II monoclonal antibodies tested in the immunoblot analysis, all seven antibodies interacted with GDH II, whereas only four antibodies recognized the protein band of the other GDH isoprotein, GDH I. When inhibition tests of the GDH isoproteins were performed with the seven anti-GDH II monoclonal antibodies, three antibodies inhibited GDH II activity, whereas only one antibody inhibited GDH I activity. The binding affinity of anti-GDH II monoclonal antibodies for GDH II (K(D) = 1.0 nM) determined using a biosensor technology (Pharmacia BIAcore) was fivefold higher than for GDH I (K(D) = 5.3 nM). These results, together with epitope mapping analysis, suggest that there may be structural differences between the two GDH isoproteins, in addition to their different biochemical properties. Using the anti-GDH II antibodies as probes, we also investigated the cross-reactivities of brain GDHs from some mammalian and an avian species, showing that the mammalian brain GDH enzymes are related immunologically to each other.
    Journal of Neurochemistry 06/1999; 72(5):2162-9. · 3.97 Impact Factor
  • Journal of biochemistry and molecular biology 06/1999; · 2.02 Impact Factor