Isabella Spiwoks-Becker

Johannes Gutenberg-Universität Mainz, Mayence, Rheinland-Pfalz, Germany

Are you Isabella Spiwoks-Becker?

Claim your profile

Publications (16)52.69 Total impact

  • Isabella Spiwoks-Becker, Roman Lamberti, Susanne Tom Dieck, Rainer Spessert
    [Show abstract] [Hide abstract]
    ABSTRACT: Ribbon synapses are tonically active high-throughput synapses. The performance of the ribbon synapse is accomplished by a specialization of the cytomatrix at the active zone referred to as the synaptic ribbon (SR). Progress in our understanding of the structure-function relationship at the ribbon synapse has come from observations that, in photoreceptors lacking a full-size scaffolding protein Bassoon (BsnΔ(Ex4/5)), dissociation of SRs coincides with perturbed signal transfer. The aim of the present study has been to elaborate the role of Bassoon as a structural organizer of the ribbon synapse and to differentiate it with regard to the ambient lighting conditions. The ultrastructure of retinal ribbon synapses has been compared between wild-type and BsnΔ(Ex4/5) mice adapted to light (low activity) and darkness (high activity). The results obtained suggest that Bassoon and environmental illumination synergistically and complementarily act as organizers of the ribbon synapse. Thus, light-dependent and Bassoon-independent regulation involves initial SR tethering to the membrane and a basic shape transition of ribbon material from spherical to rod-like, since darkness induces these features in BsnΔ(Ex4/5) rod spherules. However, the tight anchorage of the SR via an arciform density and the proper assembly of SRs to the full-sized horseshoe-shaped complex depend on Bassoon, as these steps fail in BsnΔ(Ex4/5) rod spherules.
    Neuroscience 01/2013; · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the mammalian retina, light signals generated in photoreceptors are passed to bipolar and horizontal cells via synaptic contacts. In various pathological conditions, these second-order neurons extend neurites into the outer nuclear layer (ONL). However, the molecular events associated with this neurite outgrowth are not known. Here, we characterized the morphological synaptic changes in the CNGA3/CNGB1 double-knockout (A3B1) mouse, a model of retinitis pigmentosa. In these mice, horizontal cells looked normal until postnatal day (p) 11, but started growing neurites into the ONL 1 day later. At p28, the number of sprouting processes decreased, but the remaining sprouts developed synapse-like contacts at rod cell bodies, with an ultrastructural appearance reminiscent of ribbon synapses. Hence, neurite outgrowth and ectopic synaptogenesis in the A3B1 retina were precisely timed events starting at p12 and p28, respectively. We therefore performed microarray analysis of retinal gene expression in A3B1 and wild-type mice at those ages to evaluate the genomic response underlying these two events. This analysis identified 163 differentially regulated genes in the A3B1 retina related to neurite outgrowth or plasticity of synapses. The global changes in gene expression in the A3B1 retina were consistent with activation of signaling pathways related to Tp53, Smad, and Stat3. Moreover, key molecules of these signaling pathways could be localized at or in close proximity to outgrowing neurites. We therefore propose that Tp53, Smad, and Stat3 signaling pathways contribute to the synaptic plasticity in the A3B1 retina.
    Cellular and Molecular Life Sciences CMLS 12/2012; · 5.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic transmission relies on effective and accurate compensatory endocytosis. F-BAR proteins may serve as membrane curvature sensors and/or inducers and thereby support membrane remodelling processes; yet, their in vivo functions urgently await disclosure. We demonstrate that the F-BAR protein syndapin I is crucial for proper brain function. Syndapin I knockout (KO) mice suffer from seizures, a phenotype consistent with excessive hippocampal network activity. Loss of syndapin I causes defects in presynaptic membrane trafficking processes, which are especially evident under high-capacity retrieval conditions, accumulation of endocytic intermediates, loss of synaptic vesicle (SV) size control, impaired activity-dependent SV retrieval and defective synaptic activity. Detailed molecular analyses demonstrate that syndapin I plays an important role in the recruitment of all dynamin isoforms, central players in vesicle fission reactions, to the membrane. Consistently, syndapin I KO mice share phenotypes with dynamin I KO mice, whereas their seizure phenotype is very reminiscent of fitful mice expressing a mutant dynamin. Thus, syndapin I acts as pivotal membrane anchoring factor for dynamins during regeneration of SVs.
    The EMBO Journal 09/2011; 30(24):4955-69. · 9.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cyclic nucleotide phosphodiesterase 10A (PDE10A) is highly expressed in striatal spiny projection neurons and represents a therapeutic target for the treatment of psychotic symptoms. As reported previously [J Biol Chem 2009; 284:7606-7622], in this study PDE10A was seen to be additionally expressed in the pineal gland where the levels of PDE10A transcript display daily changes. As with the transcript, the amount of PDE10A protein was found to be under daily and seasonal regulation. The observed cyclicity in the amount of PDE10A mRNA persists under constant darkness, is blocked by constant light and is modulated by the lighting regime. It therefore appears to be driven by the master clock in the suprachiasmatic nucleus (SCN). Since adrenergic agonists and dibutyryl-cAMP induce PDE10A mRNA, the in vitro clock-dependent control of Pde10a appears to be mediated via a norepinephrine → β-adrenoceptor → cAMP/protein kinase A signaling pathway. With regard to the physiological role of PDE10A in the pineal gland, the specific PDE10A inhibitor papaverine was seen to enhance the adrenergic stimulation of the second messenger cAMP and cGMP. This indicates that PDE10A downregulates adrenergic cAMP and cGMP signaling by decreasing the half-life of both nucleotides. Consistent with its effect on cAMP, PDE10A inhibition also amplifies adrenergic induction of the cAMP-inducible gene arylalkylamine N-acetyltransferase (Aanat) which codes the rate-limiting enzyme in pineal melatonin formation. The findings of this study suggest that Pde10a expression is under circadian and seasonal regulation and plays a modulatory role in pineal signal transduction and gene expression.
    Neuroendocrinology 04/2011; 94(2):113-23. · 3.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphodiesterase10A (PDE10A) is a dual specific cyclic nucleotide phosphodiesterase that is specifically enriched in striatum and which has gained attention as a therapeutic target for psychiatric disorders. The present study shows that PDE10A is also highly expressed in retinal neurons including photoreceptors. The levels of PDE10A transcript and protein display daily rhythms which could be seen in preparations of the whole retina. Corresponding changes in PDE10A mRNA were seen in photoreceptors isolated using laser microdissection. This suggests that the expressional control of the photoreceptor Pde10a gene contributes to the observed cyclicity in the amount of retinal PDE10A. The daily rhythmicity in the retinal PDE10A mRNA amount is retained under constant darkness but can be blocked by constant light or modulated by the lighting regime. It therefore appears to be driven by the endogenous retinal clock system which itself is entrained by light. The findings presented place PDE10A in the context of the visual system and suggest a role of PDE10A in the adaptation of cyclic nucleotide signaling to daily changes in light intensity in retinal neurons including photoreceptors.
    Brain research 02/2011; 1376:42-50. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In mammals, the retina contains a clock system that oscillates independently of the master clock in the suprachiasmatic nucleus and allows the retina to anticipate and to adapt to the sustained daily changes in ambient illumination. Using a combination of laser capture micro-dissection and quantitative PCR in the present study, the clockwork of mammalian photoreceptors has been recorded. The transcript amounts of the core clock genes Clock, Bmal1, Period1 (Per1), Per3, Cryptochrome2, and Casein kinase Iε in photoreceptors of rat retina have been found to undergo daily changes. Clock and Bmal1 peak with Per1 and Per3 around dark onset, whereas Casein kinase Iε and Cryptochrome2 peak at night. As shown for Clock, Per1, and Casein kinase Iε, the oscillation of transcript amounts results in daily changes of the protein products. The in-phase oscillation of Clock/Bmal1 with Pers and the rhythmic expression of Casein kinase Iε do not occur in molecular clocks of other tissues including the suprachiasmatic nucleus. Therefore, the findings presented suggest that the photoreceptor clock is unique not only in its position outside the clock hierarchy mastered by the suprachiasmatic nucleus, but also with regard to the intrinsic rhythmic properties of its molecular components.
    Journal of Neurochemistry 11/2010; 115(3):585-94. · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic ribbons (SRs) are prominent organelles that are abundant in the ribbon synapses of sensory neurons where they represent a specialization of the cytomatrix at the active zone (CAZ). SRs occur not only in neurons, but also in neuroendocrine pinealocytes where their function is still obscure. In this study, we report that pinealocyte SRs are associated with CAZ proteins such as Bassoon, Piccolo, CtBP1, Munc13-1, and the motorprotein KIF3A and, therefore, consist of a protein complex that resembles the ribbon complex of retinal and other sensory ribbon synapses. The pinealocyte ribbon complex is biochemically dynamic. Its protein composition changes in favor of Bassoon, Piccolo, and Munc13-1 at night and in favor of KIF3A during the day, whereas CtBP1 is equally present during the night and day. The diurnal dynamics of the ribbon complex persist under constant darkness and decrease after stimulus deprivation of the pineal gland by constant light. Our findings indicate that neuroendocrine pinealocytes possess a protein complex that resembles the CAZ of ribbon synapses in sensory organs and whose dynamics are under circadian regulation.
    Cell and Tissue Research 08/2008; 333(2):185-95. · 3.68 Impact Factor
  • Source
    Lin Bai, Isabella Spiwoks-Becker, Rudolf E Leube
    [Show abstract] [Hide abstract]
    ABSTRACT: Loss of synaptophysin, one of the major synaptic vesicle membrane proteins, is surprisingly well tolerated in knockout mice. To test whether compensatory gene transcription accounts for the apparent lack of functional deficiencies, comparative transcriptome analyses were carried out. The retina was selected as the most suitable tissue since morphological alterations were observed in mutant photoreceptors, most notably a reduction of synaptic vesicles and concomitant increase in clathrin-coated vesicles. Labeled cRNA was prepared in triplicate from retinae of age- and sex-matched wild-type and mutant litter mates and hybridized to high-density microarray chips. Only three differentially expressed RNAs were identified in this way, one of which was synaptophysin. Further validation by quantitative RT-PCR could only corroborate the results for the latter. We therefore conclude that, despite the distinct morphological phenotype, no significant changes in gene expression are detectable in synaptophysin-deficient animals and that therefore compensatory mechanisms are either pre-existent and/or act at the posttranscriptional level.
    Brain Research 05/2006; 1081(1):53-8. · 2.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The influence of seasonal lighting conditions on expression of clock genes and the circadian pacemaker was investigated in the rat retina. For this purpose, the 24-h profiles of nine clock genes (bmal1, clock, per1, per2, per3, dec1, dec2, cry1 and cry 2) and the arylalkylamine N-acetyltransferase gene as an indicator of the circadian pacemaker output were compared between light-dark periods of 8 : 16 and 16 : 8 h. The photoperiod influenced the daily patterns of the amount of transcript for per1, per3, dec2 and arylalkylamine N-acetyltransferase. This indicates that photoperiodic information modulates clock gene expression in addition to the circadian pacemaker of the retina. Under constant darkness, photoperiod-dependent changes in the daily profile of the level of transcript persisted for the arylalkylamine N-acetyltransferase gene but not for any of the clock genes. Hence, quantitative expression of each clock gene is influenced by the photoperiod only under the acute light-dark cycle, whereas the pacemaker is capable of storing photoperiodic information from past cycles.
    European Journal of Neuroscience 02/2006; 23(1):105-11. · 3.75 Impact Factor
  • Isabella Spiwoks-Becker, Martin Glas, Irina Lasarzik, Lutz Vollrath
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Chemical synapses equipped with ribbons are tonically active, high-output synapses. The ribbons may play a role in the trafficking of synaptic vesicles. Recent findings in retinal rod cells of BALB/c mice indicate that ribbons are large and smooth in the dark phase, and, due to the formation and release of protrusions, small during the light phase. As a consequence of these changes, ribbons may traffick fewer vesicles in the light than in the dark phases. The aim of the present study was to find out whether the above ribbon changes in this mouse strain are strictly illumination-dependent and which signalling processes may be involved. Here, we show that ribbons form protrusions and release them into the cytoplasm within 30-60 min after lights on, the reverse occurring within 30 min after lights off. Under constant light or constant dark, no circadian rhythm of synaptic ribbon changes is observed. The illumination-dependence of ribbon structure is supported by in vitro experiments showing that in dark-adapted retinas, light induces the same morphological changes as in vivo. In vitro, the effect of light on the ribbons can be counteracted by cyclic guanosine monophosphate and melatonin. In dark-adapted retinas, light effects can be produced by decreasing the calcium ion concentrations in the incubation media. These results suggest that in retinal rod cells, the well known phototransduction signalling mechanisms may be responsible for the ribbon changes presently and previously reported.
    European Journal of Neuroscience 04/2004; 19(6):1559-71. · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The abundance of the integral membrane protein synaptophysin in synaptic vesicles and its multiple possible functional contributions to transmitter exocytosis and synaptic vesicle formation stand in sharp contrast to the observed lack of defects in synaptophysin knockout mice. Assuming that deficiencies are compensated by the often coexpressed synaptophysin isoform synaptoporin, we now show that retinal rod photoreceptors, which do not synthesize synaptoporin either in wild-type or in knockout mice, are affected by the loss of synaptophysin. Multiple pale-appearing photoreceptors, as seen by electron microscopy, possess reduced cytoplasmic electron density, swollen mitochondria, an enlarged cell surface area, and, most importantly, a significantly reduced number of synaptic vesicles with an unusually bright interior. Quantification of the number of synaptic vesicles per unit area, not only in these, but also in all other rod terminals of knockout animals, reveals a considerable reduction in vesicles that is even more pronounced during the dark period, i.e., at times of highest synaptic activity. Moreover, activity-dependent reduction in synaptic vesicle diameter, typically occurring in wild-type mice, is not detected in knockout animals. The large number of clathrin-coated pits and vesicles in dark-adapted synaptophysin knockout mice is taken as an indication of compensatory usage of synaptophysin-independent pathway(s), and, conversely, in view of the overall reduction in the number of synaptic vesicles, as an indication for the presence of another synaptophysin-dependent synaptic vesicle recycling pathway. Our results provide in vivo evidence for the importance of the integral membrane protein synaptophysin for synaptic vesicle recycling and formation.
    Neuroscience 02/2001; 107(1):127-42. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study deals with structural plasticity of a special type of chemical synapse, the ribbon synapse. Near the presynaptic membrane ribbon synapses contain conspicuous electron-dense synaptic bodies which appear mainly as rod-like profiles under the transmission electron microscope. In addition, club-shaped and spherical profiles may be present, the function of which is unclear. To gain some insight into the significance of the latter structures we studied their presence in rod-type photoreceptor cells of BALB/c mice under different lighting conditions. Quantification revealed that the club-shaped and the spherical profiles showed a clear light/dark dependence. They were virtually absent at night and increased strikingly in number when the animals were exposed to light. When darkness was extended into the morning, the profiles remained low in number. As the rod cells diminish their neurotransmitter release during the light phase, the present findings are interpreted as signs of synapse inactivation.
    Italian journal of anatomy and embryology = Archivio italiano di anatomia ed embriologia 02/2001; 106(2 Suppl 1):499-507.
  • Source
    I Spiwoks-Becker, I Lasarzik, L Vollrath
    [Show abstract] [Hide abstract]
    ABSTRACT: In the vertebrate retina the presence of synaptic ribbons (SRs) is well documented in two sites only, viz., in photoreceptor axon terminals in the outer plexiform layer and in bipolar cell axons in the inner plexiform layer. The present paper reports the presence of non-photoreceptor SRs in the outer plexiform layer of cattle and mouse, where they were seen in small numbers in thin cell processes near cone pedicles of light-adapted animals. They were never seen near rod spherules. Quantitative data obtained in mice killed at different time-points revealed that the SRs under consideration increased in number during day time and were absent during the dark phase. Moreover, under high light intensity of 10000 lux they were more frequent in number compared to 100-lux-exposed animals. It is concluded that the cell processes revealing the temporary presence of SRs are processes of flat bipolar cells which may provide a feedback to cones during the light phase.
    Journal of Neurocytology 03/2000; 29(2):81-9. · 1.94 Impact Factor
  • Source
    M A Adly, I Spiwoks-Becker, L Vollrath
    [Show abstract] [Hide abstract]
    ABSTRACT: Electron microscopic sections through rod and cone ribbon synapses reveal mainly rodlike synaptic ribbon profiles, but a few unusual spherical and club-shaped profiles also occur. To elucidate the meaning of the latter two forms, the authors have investigated these ribbon synapses at different times during the 24-hour cycle and under various lighting conditions. The various types of ribbon profiles were counted, and their sizes were measured by means of transmission electron microscopy in retinas of male BALB/c mice exposed to 12 hours light (lights on at 6 AM) and 12 hours dark (LD 12:12), continuous light, or continuous darkness for 4 days. A 24-hour study of mice exposed to LD 12:12 showed that spherical and club-shaped profile numbers ranged from 0% to 29%, depending on the time of day. They reached a maximum at 3 hours after light onset, followed by a gradual decrease to approach zero at night and reappearing after light onset the next morning. After 4 days of continuous light, the spherical profiles were significantly decreased in number (examined at 9 AM). After continuous darkness, the spherical and club-shaped profiles were significantly reduced in number. Administration of 4 hours of light after 92 hours of continuous darkness restored the number of spherical and club-shaped profiles to normal values. The rodlike ribbon profiles were found to be longer in darkness than in light. In rod terminals containing spherical profiles, the rodlike ribbon profiles were shorter than in terminals without spherical profiles. CONCLUSIONS. The club-shaped and the spherical profiles were related to the turnover of the synaptic ribbons. Soon after light exposure in the morning, the synaptic ribbons formed distal swellings, giving rise to club-shaped profiles and a decrease in length. The swellings appeared to bud off, thus forming spherical synaptic bodies. This article discusses whether these changes are signs of degradation of spent ribbons, or whether they play a physiological role related to the inactivation of the ribbon synapses after light exposure.
    Investigative Ophthalmology &amp Visual Science 10/1999; 40(10):2165-72. · 3.44 Impact Factor
  • L Vollrath, I Spiwoks-Becker
    [Show abstract] [Hide abstract]
    ABSTRACT: Ribbon synapses differ from conventional chemical synapses in that they contain, within the cloud of synaptic vesicles (SV's), a specialized synaptic body, most often termed synaptic ribbon (SR). This body assumes various forms. Reconstructions reveal that what appear as rod- or ribbon-like profiles in sections are in fact rectangular or horseshoe-shaped plates. Moreover, spherical, T-shaped, table-shaped, and highly pleomorphic bodies may be present. In mammals, ribbon synapses are present in afferent synapses of photoreceptors, bipolar nerve cells, and hair cells of both the organ of Corti and the vestibular organ. Synaptic ribbons (SR's) are also found in the intrinsic cells of the third eye, the pineal gland, and in the lateral line system. The precise function of SR's is enigmatic. The prevailing concept is that SR's function as conveyor belts to channel SV's to the presynaptic membrane for neurotransmitter release by means of exocytosis. The present article reviews the evidence that speaks for a plasticity of these organelles in the retina and the third eye, as reflected in changes in number, size, shape, location, and grouping pattern. SR plasticity is especially pronounced in the mammalian and submammalian pineal gland and in cones and bipolar cells of teleost fishes. Here, SR number and size wax and wane according to the environmental lighting conditions. In the pineal SR numbers increase at night and decrease during the day. In teleost cones, SR's are in their prime during daytime and decrease or disappear at night, when transmitter release is enhanced. In addition to numerical changes, SR's may also exhibit changes in size, shape, grouping pattern, and location. In the mammalian retina of adults, in contrast to the developing retina, the reported signs of SR plasticity are subtle and not always consistent. They may reflect changes in function or may represent signs of degradation. To distinguish between the-two, more detailed studies under selected experimental conditions are required. Probably the strongest evidence for SR plasticity in the mammalian retina is that in hibernating squirrels SR's leave the synaptic site and accumulate in areas as far as 5 microns from the synapse. Changes in shape include the occurrence of club-shaped SR's and round SR's or synaptic spheres (SS's). SS's may represent a special type of synaptic body, yet belonging to the family of SR's, or may be related to the catabolism of SR's. SR number is regulated by Ca2+ in teleost cones, whereas in the mammalian pineal gland cGMP is involved. An interesting biochemical feature of ribbon synapses is that they lack synapsins. The presently reviewed results suggest to us that SR's do not primarily function as conveyor belts, but are devices to immobilize SV's in inactive ribbon synapses.
    Microscopy Research and Technique 01/1997; 35(6):472-87. · 1.59 Impact Factor
  • E Peschke, R Spessert, I Spiwoks-Becker, P Dorner, L Vollrath
    [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic ribbons (SRs) are electron-dense, plate-shaped synaptic organelles, to which electron-lucent synaptic vesicles (SVs) are attached by tiny stalks. In the mammalian pineal gland SRs are dynamic organelles, waxing and warning in number under different physiological and experimental conditions. The way in which SRs are formed, or catabolized, is not known. Since it has been suggested that actin may be part of SRs, in the present study the effect of the actin-disrupting drug cytochalasin D (CD, 1 microgram/ml, for 4 h) was examined in cultured guinea pig and rat pineal glands. The glands were preincubated for 48 h so that intra-pineal sympathetic nerve fibres degenerate and no longer release noradrenaline which may distort the results. CD had no effect on SR profile numbers in guinea pigs, but decreased them in rats (p > 0.05). The nonsignificant depressive effect of CD in rats was verified in a second experiment. To clarify the issue, acutely cultured rat pineal glands were treated with CD for 4 h, without effect. The results taken together suggest to us that CD has no major effect on pineal SR profile numbers, but that in rats preincubation for 48 h makes them vulnerable to catabolic processes. In all the experiments, the electron-dense plate of the SRs was qualitatively unaffected. However, the SVs were often larger and more irregular in shape and the stalks linking the SVs with the SRs were less frequently seen in CD-treated glands. In guinea pig pineals, in which SRs frequently lie in groups and parallel to each other, neither the distance between neighboring SRs nor the thickness of individual SRs were affected by CD. It is concluded that actin is not a major component of the SRs and the connecting stalks.
    Acta Anatomica 01/1996; 156(2):94-8.