Henno G C J M Hendriks

Universiteit Utrecht, Utrecht, Provincie Utrecht, Netherlands

Are you Henno G C J M Hendriks?

Claim your profile

Publications (5)14.03 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Little is known about the pathogenic mechanisms or potential virulence factors of Arcobacter spp. The aim of the study described here was to obtain more insights in the pathogenicity mechanisms of Arcobacter spp. by testing their ability to adhere to, invade and induce interleukin-8 expression in human Caco-2 and porcine IPI-2I cell lines. Eight Arcobacter strains were tested. Four strains were obtained from a culture collection, and represent the four Arcobacter spp. known to be associated with animals and humans. The other four strains were field isolates from the amniotic fluid of sows and from newborn piglets. All eight Arcobacter strains were able to adhere to both cell lines, and induced interleukin-8 production as early as 2 h after a 1h incubation period. This production was still increased 6 h postinfection. Differences in the cell association of the eight strains were obvious, with A. cibarius showing the highest adhesion ability. Invasion of intestinal epithelial cells was only observed for A. cryaerophilus strains. No correlation between invasiveness or strong adhesion of the tested strains and the level of interleukin-8 induction was observed.
    FEMS Immunology & Medical Microbiology 07/2007; 50(1):51-8. · 2.68 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The in vitro pathogenicity of Salmonella enterica serovar Typhimurium phage type (pt) 90 and pt 506 (also known as DT 104) isolates from human and porcine origin was studied in adhesion and invasion assays to the human cell line Caco-2 and the porcine cell line IPI-2. Interleukin-8 (IL-8) production by these two cell lines in response to stimulation by the two Salmonella phage types was also measured. Generally, Salmonella Typhimurium pt 506 and pt 90 adhered to and invaded Caco-2 cells and IPI-2 cells equally well. The release of IL-8 by Caco-2 cells or by IPI-2 cells was similar, independent of the Salmonella phage type used for stimulation of the cells. These data suggest that Salmonella Typhimurium pt 90 has a similar ability to cause Salmonella infections as Salmonella Typhimurium DT 104.
    Comparative Immunology Microbiology and Infectious Diseases 02/2007; 30(1):11-8. · 1.81 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Intestinal epithelial cells represent the first line of defence against pathogenic bacteria in the lumen of the gut. Besides acting as a physical barrier, epithelial cells orchestrate the immune response through the production of several innate immune mediator molecules including beta-defensins. Here, we establish the porcine intestinal cell line IPI-2I as a new model system to test the regulation of porcine beta-defensins 1 and 2. Gene expression of both defensins was highly upregulated by foetal calf serum components in normal growth medium. In serum-free medium, baseline expression remained low, but pBD-2 gene expression was increased 10-fold upon infection with Salmonella Typhimurium. Arcobacter cryaerophilus and Salmonella Enteritidis, pathogenic bacteria with comparable adhesion and invasion characteristics, failed to increase pBD-2 mRNA levels. Heat killed or colistin-treated Salmonella Typhimurium had no effect, showing that the upregulation of pBD-2 was dependent on the viability of the Salmonella Typhimurium. Gene expression of pBD-1 was regulated differently since an increase in pBD-1 mRNA was observed by Salmonella Enteritidis infection. We conclude that the IPI-2I cells can serve as a new model to study porcine beta-defensin regulation and that pBD-1 and pBD-2 are differentially regulated in this cell line.
    Veterinary Immunology and Immunopathology 12/2006; 114(1-2):94-102. · 1.88 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The relative contributions of the flagellum and the flagella-associated bacterial motility in the invasion of Caco-2 cells by Salmonella serotype Enteritidis were investigated using an fliC mutant defective in flagellin production and a motA mutant that carries flagella but is non-motile. Infection assays demonstrated that, at 1 h of infection, both the fliC and the motA mutants were severely impaired in bacterial invasion compared to the parental strain. Infection assays at 3 h infection demonstrated virtually equal invasion levels for both non-motile mutants and the parental strain. Together these data suggest that flagella-mediated bacterial motility accelerates the invasion of Salmonella but is not required for the invasion event per se.
    International Journal of Medical Microbiology 11/2004; 294(6):395-9. · 4.54 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Twenty-four haemolytic Escherichia coli strains were isolated from dogs with diarrhea. The strains were serotyped and analysed by polymerase chain reaction (PCR) for genes encoding virulence factors associated with E. coli that cause diarrhea in animals. Adhesion antigen production was deduced from haemagglutination experiments. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of heat extracts was also used as an indication for the production of adhesive structures. The majority of the strains was shown to produce this type of virulence factor. Adhesion and invasion tests of the strains and Caco-2 cells showed that all strains adhered and that two were invasive. The two invasive strains were positive in the intimin PCR and one of them also contained genes encoding CS31A. The PCR for heat stable toxin (ST) was positive in only four strains, as was the presence of F17 fimbrial genes. Surprisingly, 19 strains had intact P fimbrial operons, coding for an adhesin involved in urinary tract infection (UTI). The cytotoxic necrotising factor 1 (CNF1) gene, also mainly found in UTI was likewise detected in these 19 strains. Cytolethal distending toxin (Cdt) genes were found in five strains. The high number of strains positive for CNF1 and P fimbriae prompted us to test the strains in a multiplex PCR used to test E. coli isolated from UTI in various species for 30 virulence associated genes. The data showed that the majority of the diarrhea isolates have virulence factor profiles highly similar to UTI E. coli isolates from dogs. This raises the question whether these isolates are real intestinal pathogens or "innocent bystanders". However, since CNF1 producing necrotoxic E. coli (NTEC) strains isolated from humans, pigs and calves with diarrhea appear to be highly related to our strains, it might be that in dogs this type of isolate is capable of causing not only UTI, but also diarrhea. If this is the case and this type of isolate is "bifunctional", domestic animals likely constitute a reservoir of NTEC strains which can be also pathogenic for humans.
    Veterinary Microbiology 05/2002; 85(4):361-77. · 3.13 Impact Factor