Helen Mondala

Arena Pharmaceuticals, San Diego, California, United States

Are you Helen Mondala?

Claim your profile

Publications (4)12.31 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We recently showed that activation of G protein-coupled receptor 119 (GPR119) (also termed glucose dependent insulinotropic receptor) improves glucose homeostasis via direct cAMP-mediated enhancement of glucose-dependent insulin release in pancreatic beta-cells. Here we show that GPR119 also stimulates incretin hormone release and thus may regulate glucose homeostasis by this additional mechanism. GPR119 mRNA was found to be expressed at significant levels in intestinal subregions that produce glucose-dependent insulinotropic peptide and glucagon-like peptide (GLP)-1. Furthermore, in situ hybridization studies indicated that most GLP-1-producing cells coexpress GPR119 mRNA. In GLUTag cells, a well-established model of intestinal L-cell function, the potent GPR119 agonist AR231453 stimulated cAMP accumulation and GLP-1 release. When administered in mice, AR231453 increased active GLP-1 levels within 2 min after oral glucose delivery and substantially enhanced total glucose-dependent insulinotropic peptide levels. Blockade of GLP-1 receptor signaling with exendin(9-39) reduced the ability of AR231453 to improve glucose tolerance in mice. Conversely, combined administration of AR231453 and the DPP-4 inhibitor sitagliptin to wild-type mice significantly amplified both plasma GLP-1 levels and oral glucose tolerance, relative to either agent alone. In mice lacking GPR119, no such enhancement was seen. Thus, GPR119 regulates glucose tolerance by acting on intestinal endocrine cells as well as pancreatic beta-cells. These data also suggest that combined stimulation of incretin hormone release and protection against incretin hormone degradation may be an effective antidiabetic strategy.
    Endocrinology 06/2008; 149(5):2038-47. · 4.72 Impact Factor
  • Source
    01/2008; 108.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic beta-cell dysfunction is a hallmark event in the pathogenesis of type 2 diabetes. Injectable peptide agonists of the glucagon-like peptide 1 (GLP-1) receptor have shown significant promise as antidiabetic agents by virtue of their ability to amplify glucose-dependent insulin release and preserve pancreatic beta-cell mass. These effects are mediated via stimulation of cAMP through beta-cell GLP-1 receptors. We report that the Galpha(s)-coupled receptor GPR119 is largely restricted to insulin-producing beta-cells of pancreatic islets. Additionally, we show here that GPR119 functions as a glucose-dependent insulinotropic receptor. Unlike receptors for GLP-1 and other peptides that mediate enhanced glucose-dependent insulin release, GPR119 was suitable for the development of potent, orally active, small-molecule agonists. The GPR119-specific agonist AR231453 significantly increased cAMP accumulation and insulin release in both HIT-T15 cells and rodent islets. In both cases, loss of GPR119 rendered AR231453 inactive. AR231453 also enhanced glucose-dependent insulin release in vivo and improved oral glucose tolerance in wild-type mice but not in GPR119-deficient mice. Diabetic KK/A(y) mice were also highly responsive to AR231453. Orally active GPR119 agonists may offer significant promise as novel antihyperglycemic agents acting in a glucose-dependent fashion.
    Endocrinology 07/2007; 148(6):2601-9. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recently identified neuropeptide QRFP(26) is predominantly expressed in the hypothalamus and was suggested to play a role in the regulation of food intake following the observation of an acute orexigenic effect after central administration in mice. QRFP(26) exerts its effect via GPR103 and a newly identified receptor in mouse. The aim of our study was (a) to investigate the distribution of QRFP(26) and a newly discovered QRFP receptor mRNA in rat and (b) to further characterize the effects of central administration of QRFP(26) on energy balance in rats. QRFP(26) mRNA was detected in the retrochiasmatic nucleus, periventricular nucleus, arcuate nucleus and restricted areas of the lateral nucleus of the hypothalamus. We found an additional receptor with high homology for GPR103 in rat. This receptor increases inositol triphosphate production in transfected cells in presence of QRFP(26) and its mRNA was particularly enriched in ventral and posterior thalamic groups, anterior hypothalamus and medulla. When QRFP(26) (10 microg and 50 microg) was administered centrally before the start of the light phase both doses increased food intake for 2 h after injection without reaching statistical significance. QRFP(26) caused no changes in locomotor activity or energy expenditure. In summary, central QRFP(26) injection causes slight and transient hyperphagia in rats without changing any other energy balance parameters after 24 h. We conclude that QRFP(26) has limited impact on the central regulation of energy balance in rats and that its essential function remains to be clarified.
    Brain Research 12/2006; 1119(1):133-49. · 2.88 Impact Factor