Harita Veereshlingam

University of North Texas, Denton, TX, United States

Are you Harita Veereshlingam?

Claim your profile

Publications (3)19.85 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ethyl methanesulfonate mutagenesis of the model legume Medicago truncatula has previously identified several genes required for early steps in nodulation. Here, we describe a new mutant that is defective in intermediate steps of nodule differentiation. The lin (lumpy infections) mutant is characterized by a 4-fold reduction in the number of infections, all of which arrest in the root epidermis, and by nodule primordia that initiate normally but fail to mature. Genetic analyses indicate that the symbiotic phenotype is conferred by a single gene that maps to the lower arm of linkage group 1. Transcriptional markers for early Nod factor responses (RIP1 and ENOD40) are induced in lin, as is another early nodulin, ENOD20, a gene expressed during the differentiation of nodule primordia. By contrast, other markers correlated with primordium differentiation (CCS52A), infection progression (MtN6), or nodule morphogenesis (ENOD2 and ENOD8) show reduced or no induction in homozygous lin individuals. Taken together, these results suggest that LIN functions in maintenance of rhizobial infections and differentiation of nodules from nodule primordia.
    Plant physiology 12/2004; 136(3):3682-91. · 6.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the legume-Rhizobium symbiosis, we isolated and studied a novel symbiotic mutant of the model legume Medicago truncatula, designated nip (numerous infections and polyphenolics). When grown on nitrogen-free media in the presence of the compatible bacterium Sinorhizobium meliloti, the nip mutant showed nitrogen deficiency symptoms. The mutant failed to form pink nitrogen-fixing nodules that occur in the wild-type symbiosis, but instead developed small bump-like nodules on its roots that were blocked at an early stage of development. Examination of the nip nodules by light microscopy after staining with X-Gal for S. meliloti expressing a constitutive GUS gene, by confocal microscopy following staining with SYTO-13, and by electron microscopy revealed that nip initiated symbiotic interactions and formed nodule primordia and infection threads. The infection threads in nip proliferated abnormally and very rarely deposited rhizobia into plant host cells; rhizobia failed to differentiate further in these cases. nip nodules contained autofluorescent cells and accumulated a brown pigment. Histochemical staining of nip nodules revealed this pigment to be polyphenolic accumulation. RNA blot analyses demonstrated that nip nodules expressed only a subset of genes associated with nodule organogenesis, as well as elevated expression of a host defense-associated phenylalanine ammonia lyase gene. nip plants were observed to have abnormal lateral roots. nip plant root growth and nodulation responded normally to ethylene inhibitors and precursors. Allelism tests showed that nip complements 14 other M. truncatula nodulation mutants but not latd, a mutant with a more severe nodulation phenotype as well as primary and lateral root defects. Thus, the nip mutant defines a new locus, NIP, required for appropriate infection thread development during invasion of the nascent nodule by rhizobia, normal lateral root elongation, and normal regulation of host defense-like responses during symbiotic interactions.
    Plant physiology 12/2004; 136(3):3692-702. · 6.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Summary •A rapid method for detailed analysis of nodule formation has been developed. • Inoculated root tissues were stained with SYTO 13, a cell-permeant fluorescent nucleic acid-binding dye, and visualized using confocal laser scanning microscopy (CLSM). Structures with high concentrations of DNA and RNA, such as plant cell nuclei and bacteria, labeled strongly. The autofluorescent properties of cell walls made it possible to use CLSM to visualize both plant and rhizobial structures and generate a three-dimensional reconstruction of the root and invading bacteria. • This method allowed clear observation of stages and structures important in nodule formation, such as rhizobial attachment to root hairs, hair deformation, infection thread ramification, nodule primordium development and nodule cell invasion. Bacteroid structures were easily assessed without the need for fixation that might alter cellular integrity. Plant nodulation mutants with phenotypic differences in thread growth, cellular invasion and plant defense response were also documented. • Multiple samples can be assessed using detailed microscopy without the need for extensive preparative work, labor-intensive analysis, or the generation of genetically modified samples.
    New Phytologist 08/2004; 163(3):661 - 668. · 6.74 Impact Factor