Hanin Abdel-Haq

Istituto Superiore di Sanità, Roma, Latium, Italy

Are you Hanin Abdel-Haq?

Claim your profile

Publications (9)28.04 Total impact

  • Hanin Abdel-Haq ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The high-speed supernatant (S(HS)) of scrapie-infected hamster brain homogenate contains a soluble infectivity similar to that of the plasma that escapes leukodepletion and can transmit prion infection. This recent finding highlights the fact that soluble prion infectivity could be relevant for prion disease propagation and progression. PrP(Sc) is essential in prion disease pathogenesis, but little to nothing is known about the PrP(Sc) species that may be associated with this form of prion infectivity. Scrapie-infected hamster plasma and S(HS) were subjected to biochemical analysis, and the results demonstrate for the first time that soluble infectivity is associated with a water-soluble PrP(Sc) species with substantially different properties from classical PrP(Sc), the concentration of which seems to correlate with the magnitude and efficiency of the soluble infectivity. Such characteristics suggest that this species might represent the soluble prion agent itself or its vehicle, highlighting the need to adequately revise the strategies involved in prion removal, diagnosis, and therapy.
    Archives of Virology 06/2015; 160(9). DOI:10.1007/s00705-015-2487-y · 2.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In most forms of prion diseases blood is infectious, but the detection by immunochemistry techniques of the only available marker of infection (the misfolded prion protein, PrPTSE) in blood remains elusive. We developed a novel method for the detection of PrPTSE in blood of prion-infected rodents based on the finding that PrPTSE is associated with plasma exosomes. However, further purification of exosome on sucrose gradient was necessary for removing plasma immunoglobulins, which interfere with PrPTSE masking its detection by immunochemistry. Finally, we report that about 20% of plasma infectivity is associated with exosomes.
    Journal of General Virology 03/2015; 96(7). DOI:10.1099/vir.0.000117 · 3.18 Impact Factor
  • Source
    Hanin Abdel-Haq ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Development of numerous advanced techniques in recent years have allowed detection of the pathological prion protein (PrPTSE), the unique marker of transmissible spongiform encephalopathies (TSEs, or prion diseases), in the blood of animals and humans; however, an ante-mortem screening test that can be used for the routine diagnosis of human prion diseases remains unavailable. A critical, analytical review of all the diagnostic assays developed to date will allow an evaluation of progress in this field and may facilitate the identification of the possible reason/s for this delay. Thus, in this review, I provide a detailed overview of the techniques currently available for detecting PrPTSE and other markers of the disease in blood, as well as an analysis of the significance, feasibility, reliability, and the application spectrum for these methods. I highlight that factors intrinsic and extrinsic to blood may interfere with the detection of PrPTSE/prions, and that this is not yet taken into account in current tests. This may inspire researchers in this field to not only aspire to increase test sensitivity but also to adopt other strategies in order to identify and overcome the limitations that hamper the development of a successful routine blood test for prion diseases.
    Journal of General Virology 11/2014; 96(Pt_3). DOI:10.1099/vir.0.070979-0 · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The safety of red blood cells (RBCs) is of concern because of the occurrence of four transfusion-transmitted variant Creutzfeldt-Jakob disease (vCJD) cases in the United Kingdom. The absence of validated screening tests requires the use of procedures to remove prions from blood to minimize the risk of transmission. These procedures must be validated using infectious prions in a form that is as close as possible to one in blood. Units of human whole blood (WB) and RBCs were spiked with high-speed supernatants of 263K scrapie-infected hamster brain homogenates. Spiked samples were leukoreduced and then passed through prion-removing filters (Pall Corporation). In another experiment, RBCs from 263K scrapie-infected hamsters were treated as above, and residual infectivity was measured by bioassay. The overall removal of infectivity by the filters from prion-spiked WB and RBCs was approximately two orders of magnitude. No infectivity was detected in filtered hamster RBCs endogenously infected with scrapie. The use of prion-removing filters may help to reduce the risk of transfusion-transmitted vCJD. To avoid overestimation of prion removal efficiency in validation studies, it may be more appropriate to use supernates from ultracentrifugation of scrapie-infected hamster brain homogenate rather than the current standard brain homogenates.
    Transfusion 08/2013; 54(4). DOI:10.1111/trf.12369 · 3.23 Impact Factor
  • Hanin Abdel-Haq · Elena Bossù ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Because capillary zone electrophoresis (CZE) showed higher resolution for highly charged large carbohydrates and complex structures when compared to other chromatographic separation methods, it was chosen for the characterization of nanoparticles (NPs) of pentosan polysulfate (PPS). Thus, using the CZE technique, we developed a reliable, sensitive and rapid protocol that allowed the detection and characterization of PPS NPs. This protocol was able to determine the profile of both the NPs and the species of PPS entrapped into them, and to quantify free and bound PPS showing high reproducibility, acceptable accuracy and a good degree of precision. Moreover, it allowed the evaluation of the size and charge of the NPs. This protocol might be suitable for the characterization of other kinds of NPs also.
    Journal of Chromatography A 08/2012; 1257:125-30. DOI:10.1016/j.chroma.2012.07.096 · 4.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The safety of plasma-derived products is of concern for possible transmission of variant Creutzfeldt-Jakob disease. The absence of validated screening tests requires the use of procedures to remove or inactivate prions during the manufacture of plasma-derived products to minimize the risk of transmission. These procedures need proper validation studies based on spiking human plasma or intermediate fractions of plasma fractionation with prions in a form as close as possible to that present in blood. Human albumin was spiked with low-speed or high-speed supernatants of 263K scrapie-infected hamster brain homogenates. Spiked albumin was then passed through a cascade of filters from 100 nm down to 20 to 15 nm. Residual infectivity was measured by bioassay. The overall removal of infectivity spiked into albumin through serial nanofiltration steps was 4 to 5 logs using low-speed supernatant and 2 to 3 logs with high-speed supernatant. These findings confirm the utility of nanofiltration in removing infectivity from plasma (or other products) spiked with scrapie brain homogenate supernatants. However, efficiency is diminished using supernatants that have been ultracentrifuged to reduce aggregated forms of the infectious agent. Thus, filtration removal data based on experiments using "standard" low-speed centrifugation supernatants might overestimate the amount of prion removal in plasma or urine-derived therapeutic products.
    Transfusion 11/2011; 52(5):953-62. DOI:10.1111/j.1537-2995.2011.03425.x · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transmissible spongiform encephalopathies (TSEs) are neurodegenerative pathologies characterized by the accumulation of amyloid fibrils mainly composed of the pathological isoform of the prion protein (PrP(TSE)). PrP(TSE) pre-amyloid fibrils are supposed to induce neurodegenerative lesions possibly through the alteration of membrane permeability. The effect of PrP(TSE) on cellular membranes has been modeled in vitro by synthetic peptides that are, however, only partially representative of PrP(TSE) isoforms found in vivo. In the present work we show that a synthetic membrane exposed to PrP27-30 extracted from TSE-infected hamster brains changes its permeability because of the formation of molecular pores that alter the conductance of the synthetic lipid bilayer. Synthetic membrane challenged with the recombinant prion peptide PrP90-231 shows a much lower conductance. Elevation of calcium ion concentration not only increases the current amplitude due to the action of both PrP27-30 and PrP90-231 on the membrane, but also amplifies the interaction of PrP90-231 with the lipid bilayer.
    Neurochemistry International 06/2011; 59(2):168-74. DOI:10.1016/j.neuint.2011.04.008 · 3.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The involvement of muscles in the pathogenesis of transmissible spongiform encephalopathies (TSEs) is irregular and unpredictable. We show that the TSE-specific protein (PrP(TSE)) is present in muscles of mice fed with a mouse-adapted strain of bovine spongiform encephalopathy as early as 100 days post-infection, corresponding to about one-third of the incubation period. The proportion of mice with PrP(TSE)-positive muscles and the number of muscles involved increased as infection progressed, but never attained more than a limited distribution, even at the clinical stage of disease. The appearance of PrP(TSE) in muscles during the preclinical stage of disease was probably due to the haematogenous/lymphatic spread of infectivity from the gastrointestinal tract to lymphatic tissues associated with muscles, whereas in symptomatic animals, the presence of PrP(TSE) in the nervous system, in neuromuscular junctions and in muscle fibres suggests a centrifugal spread from the central nervous system, as already observed in other TSE models.
    Journal of General Virology 07/2009; 90(Pt 10):2563-8. DOI:10.1099/vir.0.010801-0 · 3.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vitro and in vivo studies have shown that phthalocyanine tetrasulfonate (PcTS), a cyclic tetrapyrrole compound, is an efficient antiscrapie drug. To investigate the spectrum of PcTS against prion diseases, we tested the effect of PcTS on two mouse-adapted human strains. We also tested PcTS in rodents infected with two scrapie strains (139A and 263K). PcTS treatment significantly prolonged mean survival times of all infected animals. These results show that PcTS is effective on different prion strains, confirming its potential use for prion therapy.
    Archives of Virology 06/2009; 154(6):1005-7. DOI:10.1007/s00705-009-0394-9 · 2.39 Impact Factor

Publication Stats

32 Citations
28.04 Total Impact Points


  • 2009-2015
    • Istituto Superiore di Sanità
      • Department of Cell Biology and Neuroscience
      Roma, Latium, Italy
  • 2011
    • Laboratoire français du Fractionnement et des Biotechnologies
      Les Ulis, Île-de-France, France