Gertrud Haas

University of Innsbruck, Innsbruck, Tyrol, Austria

Are you Gertrud Haas?

Claim your profile

Publications (7)16.98 Total impact

  • Canadian Journal of Ophthalmology 02/2014; 49(1):e32-5. · 1.15 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Purpose: To report the efficacy of reduced-fluence photodynamic therapy (PDT) combined with intravitreal ranibizumab for the treatment of nonproliferative macular telangiectasia (MacTel) type 2. Methods: Noncomparative, interventional, retrospective case series; 5 eyes of 4 patients were studied. Patients were treated with reduced-fluence PDT and intravitreal ranibizumab within 24 h. After initial treatment, follow-up was at least 12 months in all patients. Results: At baseline median logMAR (logarithm of the minimal angle of resolution) best-corrected visual acuity (BCVA) was 1.0 (range, 1.0-0.3). At 3 months of follow-up vision increased in 3 out of 5 eyes and median BCVA was 0.4 (range, 1.0-0.2). The gain of BCVA ranged from 6 lines to 1 line. Visual acuity remained stable in the other 2 study eyes. No eyes lost vision at 3 months of follow-up. At 12 months of follow-up median logMAR BCVA was 0.7 (range, 1.3-0.3). Two eyes had maintained their gain in BCVA compared to baseline. Two eyes lost vision compared to baseline and 1 eye showed unchanged visual acuity at 12 months of follow-up. Conclusion: A combination therapy with reduced-fluence PDT and intravitreal ranibizumab might be a valuable treatment option for eyes with progressive vision loss due to nonproliferative MacTel type 2.
    Ophthalmologica 04/2013; · 1.41 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The aim of the study was to investigate the presence and distribution of PE-11, a peptide derived from chromogranin B, in the rat eye. For this purpose, newborn rats were injected with a single dosage of 50mg/kg capsaicin subcutaneously under the neck fold and after three months, particular eye tissues were dissected and the concentration of PE-11-like immunoreactivity was determined by radioimmunoassay. Furthermore, PE-11-like immunoreactivities were characterized in an extract of the rat eye by reversed phase HPLC. Then, the distribution pattern of PE-11 was investigated in the rat eye and rat trigeminal ganglion by immunofluorescence. As a result, PE-11 was present in each tissue of the rat eye and capsaicin pretreatment led to a 88.05% (±7.07) and a 64.26% (±14.17) decrease of the levels of PE-11 in the cornea and choroid/sclera, respectively, and to a complete loss in the iris/ciliary body complex. Approximately 70% of immunoreactivities detected by the PE-11 antiserum have been found to represent authentic PE-11. Sparse nerve fibers were visualized in the corneal and uveal stroma, surrounding blood vessels at the limbus, ciliary body and choroid and in association with the dilator and sphincter muscle. Furthermore, immunoreactivity was present in the corneal endothelium. In the retina and optic nerve, glia was labeled. In the rat trigeminal ganglion, PE-11-immunoreactivity was visualized in small and medium sized ganglion cells with a diameter of up to 30μm. In conclusion, there is unequivocal evidence that PE-11 is a constituent of capsaicin-sensitive sensory neurons innervating the rat eye and the distribution pattern is typically peptidergic in the peripheral innervation but in the retina completely atypical for neuropeptides and unique.
    Peptides 03/2011; 32(6):1201-6. · 2.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Protein kinase C (PKC) is involved in cell activation. We investigated PKC-mediated pathways and secretion of matrix metalloproteinases (MMPs) in phagocytosis by human retinal pigment epithelial cells (RPE). We used time-resolved fluorometry for europium-labeled microsphere uptake and gel zymography to assay the influence of PKC modulators. PKC inhibitors blocked phagocytosis by RPE. ARPE-19, a human RPE-cell line, showed reduced secretion of MMP-2, although MMP-9 secretion by PKC activation was conserved in both cell types, namely in the primary RPEs and in the RPE-cell line. Particle uptake by RPE cells requires activation of PKC; the use of PKC inhibitors as new anticancer drugs may possibly cause ocular side-effects.
    International Ophthalmology 10/2009; 29(5):333-41.
  • [show abstract] [hide abstract]
    ABSTRACT: Over the last five decades, several neuropeptides have been discovered which subsequently have been found to be highly conserved during evolution, to be widely distributed both in the central and peripheral nervous system and which act as neurotransmitters and/or neuromodulators. In the eye, the first peptide to be explored was substance P which was reported to be present in the retina but also in peripherally innervated tissues of the eye. Substance P is certainly the best characterized peptide which has been found in sensory neurons innervating the eye. Functionally, it has been shown to act trophically on corneal wound healing and to participate in the irritative response in lower mammals, a model for neurogenic inflammation, where it mediates the noncholinergic nonadrenergic contraction of the sphincter muscle. Over the last three decades, the interest has extended to investigate the presence and distribution of other neuropeptides including calcitonin gene-related peptide, vasoactive intestinal polypeptide, neuropeptide Y, pituitary adenylate cyclase-activating polypeptides, cholecystokinin, somatostatin, neuronal nitric oxide, galanin, neurokinin A or secretoneurin and important functional results have been obtained for these peptides. This review focuses on summarizing the current knowledge about neuropeptides in the eye excluding the retina and retinal pigment epithelium and to elucidate their potential functional significance.
    Brain Research Reviews 02/2007; 53(1):39-62. · 7.82 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Very recently, the authors found levels of neurokinin (NK) A-like immunoreactivities in the human retina which were more than five times higher than those of substance P (SP). The present study aimed to find out how many of these immunoreactivities can be attributed to NKA and NKB and then the exact distribution pattern of both NKA and NKB was evaluated in the human retina and compared with that of SP. For this purpose, NKA-like immunoreactivities were characterized in the human retina by reversed phase HPLC followed by radioimmunoassay using the K12 antibody which recognizes both NKA and NKB. Furthermore, the retinae from both a 22- and 70-year-old donor were processed for double-immunofluorescence NKA/SP and NKB/SP. The results showed that NKA contributes to approximately two thirds and NKB to approximately one third of the immunoreactivities measured with the K12 antibody. NKA was found to be localized in sparse amacrine cells in the proximal inner nuclear layer, in displaced amacrine cells in the ganglion cell layer with processes ramifying in stratum 3 of the inner plexiform layer and also in sparse ganglion cells. By contrast, staining for NKB was only observed in ganglion cells and in the nerve fiber layer. Double-immunofluorescence revealed cellular colocalization of NKA with SP and also of NKB with SP. Thus, the levels of NKA and NKB are more than three and two times higher than those of SP, respectively. Whereas the distribution pattern of NKA is typical for neuropeptides, the localization of NKB exclusively in ganglion cells is atypical and unique.
    Peptides 01/2007; 27(12):3370-6. · 2.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Retinal pigment epithelial (RPE) cells provide crucial functions for the maintenance of the retinal environment. We investigated the phagocytotic mechanisms of RPE cells evaluating the question whether particle uptake underlies a diurnal rhythm. Additionally, a possible connection of volume regulation and the phagocytotic function of RPE cells was studied. As antiviral nucleoside analogues influence cell-volume-regulating mechanisms, we tested several antiviral drugs. Cultured primary RPE cells and a permanent cell line (ARPE-19) were tested for uptake of europium-labeled microspheres quantified by time-resolved fluorometry. Cells were also exposed to cyclic illumination or continuous light and dark culture conditions. Inhibitors of cytoskeleton (microtubuli, actin) and osmotic swelling were also tested. Ingested FITC-labeled microparticles were found in phagosomes strongly associated which the cytoskeleton as they could not be easily moved by laser tweezer microscopy. Phagocytosis was observed predominately during dark intervals and was reduced by continuous light exposure. The diurnal rhythm of unsynchronized RPE cultures was abolished by microtubule inhibitors although no inhibition of overall particle uptake by cytoskeletal blockers was observed. Hypoosmotic swelling of RPE also decreased phagocytosis. Acyclovir was found inhibitory in ARPE-19 cells, whereas azidothymidine showed a protracted inhibiting activity on primary RPE cells and ganciclovir was inactive in both cell types. The presence of a diurnal rhythm also in culture indicates genetic determination of light-regulated particle uptake. This mechanism appears to be influenced by the regulation of cell volume and microtubule function. Inhibition of RPE function by antiviral drugs is a novel finding and in accordance with interferences of the tested drugs with cellular chloride channels described earlier. It may give a hint towards possible ocular side effects in the long-term use of nucleoside-analogous substances.
    Ophthalmic Research 02/2006; 38(3):164-74. · 1.56 Impact Factor