Gerburg M Spiekermann

Harvard Medical School, Boston, Massachusetts, United States

Are you Gerburg M Spiekermann?

Claim your profile

Publications (5)50.34 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Administration of therapeutic proteins by methods other than injection is limited, in part, by inefficient penetration of epithelial barriers. Therefore, unique approaches to breaching these barriers are needed. The neonatal constant region fragment (Fc) receptor (FcRn), which is responsible for IgG transport across the intestinal epithelium in newborn rodents, is expressed in epithelial cells in adult humans and non-human primates. Here we show that FcRn-mediated transport is functional in the lung of non-human primates and that this transport system can be used to deliver erythropoietin (Epo) when it is conjugated to the Fc domain of IgG1. FcRn-dependent absorption was more efficient when the EpoFc fusion protein was deposited predominantly in the upper and central airways of the lung, where epithelial expression of FcRn was most prominently detected. To optimize fusion protein absorption in the lung, we created a recombinant "monomeric-Epo" Fc fusion protein comprised of a single molecule of Epo conjugated to a dimeric Fc. This fusion protein exhibited enhanced pharmacokinetic and pharmacodynamic properties. The bioavailability of the EpoFc monomer when delivered through the lung was approximately equal to that reported for unconjugated Epo delivered s.c. in humans. These studies show that FcRn can be harnessed to noninvasively deliver bioactive proteins into the systemic circulation in therapeutic quantities.
    Proceedings of the National Academy of Sciences 07/2004; 101(26):9763-8. · 9.74 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Mucosal secretions of the human gastrointestinal, respiratory, and genital tracts contain the immunoglobulins (Ig)G and secretory IgA (sIgA) that function together in host defense. Exactly how IgG crosses epithelial barriers to function in mucosal immunity remains unknown. Here, we test the idea that the MHC class I-related Fc-receptor, FcRn, transports IgG across the mucosal surface of the human and mouse lung from lumen to serosa. We find that bronchial epithelial cells of the human, nonhuman primate, and mouse, express FcRn in adult-life, and demonstrate FcRn-dependent absorption of a bioactive Fc-fusion protein across the respiratory epithelium of the mouse in vivo. Thus, IgG, like dimeric IgA, can cross epithelial barriers by receptor-mediated transcytosis in adult animals. These data show that mucosal surfaces that express FcRn reabsorb IgG and explain a mechanism by which IgG may act in immune surveillance to retrieve lumenal antigens for processing in the lamina propria or systemically.
    Journal of Experimental Medicine 09/2002; 196(3):303-10. · 13.21 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Mucosal secretions of the human gastrointestinal, respiratory, and genital tracts contain the immunoglobulins (Ig)G and secretory IgA (sIgA) that function together in host defense. Exactly how IgG crosses epithelial barriers to function in mucosal immunity remains unknown. Here, we test the idea that the MHC class I–related Fc-receptor, FcRn, transports IgG across the mucosal surface of the human and mouse lung from lumen to serosa. We find that bronchial epithelial cells of the human, nonhuman primate, and mouse, express FcRn in adult-life, and demonstrate FcRn-dependent absorption of a bioactive Fc-fusion protein across the respiratory epithelium of the mouse in vivo. Thus, IgG, like dimeric IgA, can cross epithelial barriers by receptor-mediated transcytosis in adult animals. These data show that mucosal surfaces that express FcRn reabsorb IgG and explain a mechanism by which IgG may act in immune surveillance to retrieve lumenal antigens for processing in the lamina propria or systemically.
    Journal of Experimental Medicine 08/2002; 196(3):303-310. · 13.21 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The human major histocompatibility complex (MHC) on chromosome 6 encodes three classical class-I genes: human leukocyte antigens (HLA) A, B, and C. These polymorphic genes encode a 43- to 45-kDa cell surface glycoprotein that, in association with the 12-kDa beta2-microglobulin molecule, functions in the presentation of nine amino acid peptides to the T-cell receptor of CD8-bearing T lymphocytes and killer inhibitory receptors on natural killer cells. In addition to these ubiquitously expressed, polymorphic proteins, the human genome also encodes several nonclassical MHC class-I-like, or class Ib, genes that, in general, encode nonpolymorphic molecules involved in various specific immunological functions. Many of these genes, including CD1, the neonatal Fc receptor for IgG, HLA-G, HLA-E, the MHC class-I chain-related gene A, and Hfe, are prominently displayed on epithelial cells, suggesting an important role in epithelial cell biology.
    Acta Odontologica Scandinavica 07/2001; 59(3):139-44. · 1.36 Impact Factor
  • Gerburg Maria Spiekermann, Richard S. Blumberg, Wayne I. Lencer
    Gastroenterology 01/2000; 118(4). · 12.82 Impact Factor