Are you Emily S Pasternak?

Claim your profile

Publications (2)7.03 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyloid-beta1-42 (Abeta1-42) is crucial to Alzheimer disease (AD) pathogenesis but the conformation of the toxic Abeta species remains uncertain. AD risk is increased by apolipoprotein E4 (apoE4) and decreased by apoE2 compared with the apoE3 isoform, but whether inheritance of apoE4 represents a gain of negative or a loss of protective function is also unresolved. Using hippocampal slices from apoE knockout (apoE-KO) and human apoE2, E3, and E4 targeted replacement (apoE-TR) mice, we found that oligomeric Abeta1-42 inhibited long-term potentiation (LTP) with a hierarchy of susceptibility mirroring clinical AD risk (apoE4-TR > apoE3-TR = apoE-KO > apoE2-TR), and that comparable doses of unaggregated Abeta1-42 did not affect LTP. These data provide a novel link among apoE isoform, Abeta1-42, and a functional cellular model of memory. In this model, apoE4 confers a gain of negative function synergistic with Abeta1-42, apoE2 is protective, and the apoE-Abeta interaction is specific to oligomeric Abeta1-42.
    Neurobiology of Disease 02/2005; 18(1):75-82. · 5.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inheritance of the epsilon4 allele for apolipoprotein E (apoE) increases the risk of Alzheimer disease and memory impairment, whereas epsilon2 decreases these risks compared with the most common epsilon3 allele, but the mechanism for these effects is unknown. Long-term potentiation (LTP) is an experimentally induced increase in synaptic efficacy that models memory. Using hippocampal slices from wild type (WT), apoE knockout (apoE-KO), and targeted replacement mice expressing human apoE2, E3, or E4 (apoE-TR) we found that although all strains had comparable basal synaptic transmission, LTP was significantly greater in WT and apoE3-TR than in apoE-KO, apoE2-TR or apoE4-TR. This novel system may be used to investigate the mechanisms of apoE isoform dependent modulation of susceptibility to memory impairment.
    Neuroreport 01/2005; 15(17):2655-8. · 1.40 Impact Factor