E N Meyers

University of California, San Francisco, San Francisco, CA, United States

Are you E N Meyers?

Claim your profile

Publications (7)119.24 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Development of the vertebrate limb bud depends on reciprocal interactions between the zone of polarizing activity (ZPA) and the apical ectodermal ridge (AER). Sonic hedgehog (SHH) and fibroblast growth factors (FGFs) are key signalling molecules produced in the ZPA and AER, respectively. Experiments in chicks suggested that SHH expression in the ZPA is maintained by FGF4 expression in the AER, and vice versa, providing a molecular mechanism for coordinating the activities of these two signalling centres. This SHH/FGF4 feedback loop model is supported by genetic evidence showing that Fgf4 expression is not maintained in Shh-/- mouse limbs. We report here that Shh expression is maintained and limb formation is normal when Fgf4 is inactivated in mouse limbs, thus contradicting the model. We also found that maintenance of Fgf9 and Fgf17 expression is dependent on Shh, whereas Fgf8 expression is not. We discuss a model in which no individual Fgf expressed in the AER (AER-Fgf) is solely necessary to maintain Shh expression, but, instead, the combined activities of two or more AER-Fgfs function in a positive feedback loop with Shh to control limb development.
    Nature Genetics 06/2000; 25(1):83-6. · 35.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fgf8 and Fgf4 encode FGF family members that are coexpressed in the primitive streak of the gastrulating mouse embryo. We have analyzed the phenotype of Fgf8−/− embryos and discovered that they fail to express Fgf4 in the streak. In the absence of both FGF8 and FGF4, epiblast cells move into the streak and undergo an epithelial-to-mesenchymal transition, but most cells then fail to move away from the streak. As a consequence, no embryonic mesoderm- or endoderm-derived tissues develop, although extraembryonic tissues form. Patterning of the prospective neuroectoderm is greatly perturbed in the mutant embryos. Anterior neuroectoderm markers are widely expressed, at least in part because the anterior visceral endoderm, which provides signals that regulate their expression, is not displaced proximally in the absence of definitive endoderm. Posterior neuroectoderm markers are not expressed, presumably because there is neither mesendoderm underlying the prospective neuroectoderm nor a morphologically normal node to provide the inductive signals necessary for their expression. This study identifies Fgf8 as a gene essential for gastrulation and shows that signaling via FGF8 and/or FGF4 is required for cell migration away from the primitive streak.
    Genes & Development 08/1999; · 12.44 Impact Factor
  • E N Meyers, G R Martin
    [Show abstract] [Hide abstract]
    ABSTRACT: A molecular pathway leading to left-right asymmetry in the chick embryo has been described, in which FGF8 is a right determinant and Sonic Hedgehog a left determinant. Here evidence is presented that the Fgf8 and Sonic Hedgehog genes are required for left-right axis determination in the mouse embryo, but that they have different functions from those previously reported in the chick. In the mouse FGF8 is a left determinant and Sonic Hedgehog is required to prevent left determinants from being expressed on the right.
    Science 08/1999; 285(5426):403-6. · 31.03 Impact Factor
  • Erik N Meyers, Gail R Martin
    Pediatric Research 01/1999; 45. · 2.67 Impact Factor
  • Source
    E N Meyers, M Lewandoski, G R Martin
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe a strategy for generating an allelic series of mutations at a given locus that requires the production of only one targetted mouse line. The 'allelogenic' mouse line we produced carries a hypomorphic allele of Fgf8, which can be converted to a null allele by mating to cre transgenic animals. The hypomorphic allele can also be reverted to wild-type by mating the allelogenic mice to flp transgenic animals, thereby generating a mouse line suitable for Cre-induced tissue-specific knockout experiments. Analysis of embryos carrying different combinations of these alleles revealed requirements for Fgf8 gene function during gastrulation, as well as cardiac, craniofacial, forebrain, midbrain and cerebellar development.
    Nature Genetics 03/1998; 18(2):136-41. · 35.21 Impact Factor
  • Erik N. Meyers, Mark Lewandoski, Gail R. Martin
    Pediatric Research 01/1998; 43. · 2.67 Impact Factor
  • M Lewandoski, E N Meyers, G R Martin
    Cold Spring Harbor Symposia on Quantitative Biology 02/1997; 62:159-68.