Deok Hyo Yoon

Kangwon National University, Shunsen, Gangwon, South Korea

Are you Deok Hyo Yoon?

Claim your profile

Publications (16)34.66 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Gouania leptostachya DC. var. tonkinensis Pitard. Rhamnaceae is a traditional medicinal plant used in Thailand for treating various inflammatory symptoms. However, no systematic studies have been performed concerning the anti-inflammatory effects or molecular mechanisms of this plant. The immunopharmacological activities of a methanol extract from the leaves and twigs of G. leptostachya (Gl-ME) were elucidated based on the gastritis symptoms of mice treated with HCl/EtOH and the inflammatory responses, such as nitric oxide (NO) release and prostaglandin E2 (PGE2 ) production, from RAW264.7 cells and peritoneal macrophages. Moreover, inhibitory target molecules were also assessed. Gl-ME dose-dependently diminished the secretion of NO and PGE2 from LPS-stimulated RAW264.7 cells and peritoneal macrophages. The gastritis lesions of HCl/EtOH-treated mice were also attenuated after Gl-ME treatment. The extract (50 and 300 µg/mL) clearly reduced mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, nuclear translocation of p65/nuclear factor (NF)-κB, phosphorylation of p65-activating upstream enzymes, such as protein kinase B (AKT), inhibitor of κBα kinase (IKK), and inhibitor of κB (IκBα), and the enzymatic activity of Src. By HPLC analysis, one of the major components in the extract was revealed as resveratrol with NO and Src inhibitory activities. Moreover, this compound suppressed NO production and HCl/EtOH-induced gastric symptoms. Therefore, these results suggest that Gl-ME might be useful as an herbal anti-inflammatory medicine through the inhibition of Src and NF-κB activation pathways. The efficacy data of G. leptostachya also implies that this plant could be further tested to see whether it can be developed as potential anti-inflammatory preparation. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
    Phytotherapy research : PTR. 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Persicaria chinensis L. (Polygonaceae) [also synonym as Polygonum chimnense L.] has been used as Chinese traditional medicine to treat ulcer, eczema, stomach ache, and various inflammatory skin diseases. Due to no molecular pharmacological evidence of this anti-inflammatory herbal plant, we investigated the inhibitory mechanisms and target proteins contributing to the anti-inflammatory responses of the plant by using its methanolic extract (Pc-ME).Materials and methodsWe used lipopolysaccharide (LPS)-treated macrophages and a murine HCl/EtOH-induced gastritis model to evaluate the anti-inflammatory activity of Pc-ME. HPLC analysis was employed to identify potential active components of this extract. Molecular approaches including kinase assays, reporter gene assays, immunoprecipitation analysis, and overexpression of target enzymes were used to confirm target enzymes.ResultsPc-ME inhibited LPS-induced nitric oxide and prostaglandin E2 release by RAW264.7 macrophages and ameliorated HCl/EtOH-induced gastric ulcers in mice. The nuclear translocation of NF-κB (p65 and p50) was suppressed by Pc-ME. Phosphorylation of Src and Syk, their kinase activities, and formation of the signaling complex of these proteins were repressed by Pc-ME. Phosphorylation of p85 and Akt induced by Src or Syk overexpression was blocked by Pc-ME. In the mouse gastritis model, orally administered Pc-ME suppressed the increased phosphorylation of IκBα, Αkt, Src, and Syk. Caffeic acid, kaempferol, and quercetin, identified as major anti-inflammatory components of Pc-ME by HPLC, displayed strong nitric oxide inhibitory activity in LPS-treated macrophages.Conclusion Pc-ME might play a pivotal ethnopharmacologic role as an anti-inflammatory herbal medicine by targeting Syk and Src kinases and their downstream transcription factor NF-κB.
    Journal of Ethnopharmacology. 11/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Artemisia asiatica Nakai (Compositae) is a representative herbal plant used to treat infection and inflammatory diseases. Although A. asiatica is reported to have immunopharmacological activities, the mechanisms of these activities and the effectiveness of A. asiatica preparations in use are not known. To evaluate the anti-inflammatory activities of A. asiatica ethanol extract (Aa-EE), we assayed nitric oxide (NO), tumor necrosis factor (TNF)-α, and prostaglandin E2 (PGE2) in macrophages and measured the extent of tissue injury in a model of gastric ulcer induced in mice by treatment with HCl in EtOH. Putative enzymatic mediators of Aa-EE activities were identified by nuclear fractionation, reporter gene assay, immuoprecipitation, immunoblotting, and kinase assay. Active compound in Aa-EE was identified using HPLC. Treatment of RAW264.7 cells and peritoneal macrophages with Aa-EE suppressed the production of NO, PGE2, and TNF-α in response to lipopolysaccharide (LPS) and induced heme oxygenase-1 expression. The Aa-EE also ameliorated symptoms of gastric ulcer in HCl/EtOH-treated mice. These effects were associated with the inhibition of nuclear translocation of nuclear factor (NF)-κB and activator protein (AP)-1, implying that the anti-inflammatory action of the Aa-EE occurred through transcriptional inhibition. The upstream regulatory signals Syk and Src for translocation of NF-κB and TRAF6 for AP-1 were identified as targets of this effect. Analysis of Aa-EE by HPLC revealed the presence of luteolin, known to inhibit NO and PGE2 activity. The anti-inflammatory activities attributed to Artemisia asiatica Nakai in traditional medicine may be mediated by luteolin through inhibition of Src/Syk/NF-κB and TRAF6/JNK/AP-1 signaling pathways.
    Journal of ethnopharmacology 02/2014; · 2.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The inhibitory activities of the Cordyceps pruinosa butanol fraction (Cp-BF) were investigated by determining inflammatory responses of lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells and by evaluating HCl/ethanol (EtOH)-triggered gastric ulcers in mice. The molecular mechanisms of the inhibitory effects of Cp-BF were investigated by identifying target enzymes using biochemical and molecular biological approaches. Cp-BF strongly inhibited the production of NO and TNF-α, release of reactive oxygen species (ROS), phagocytic uptake of FITC-dextran, and mRNA expression levels of interleukin (IL)-6, inducible NO synthase (iNOS), and tumour necrosis factor-alpha (TNF)-α in activated RAW264.7 cells. Cp-BF also strongly downregulated the NF-κB pathway by suppressing IKKβ according to luciferase reporter assays and immunoblot analysis. Furthermore, Cp-BF blocked both increased levels of NF-κB-mediated luciferase activities and phosphorylation of p65/p50 observed by IKKβ overexpression. Finally, orally administered Cp-BF was found to attenuate gastric ulcer and block the phosphorylation of IκBα induced by HCl/EtOH. Therefore, these results suggest that the anti-inflammatory activity of Cp-BF may be mediated by suppression of IKKα and its downstream NF-κB activation. Since our group has established the mass cultivation conditions by developing culture conditions for Cordyceps pruinosa, the information presented in this study may be useful for developing new anti-inflammatory agents.
    Evidence-based complementary and alternative medicine : eCAM. 01/2014; 2014:562467.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerbera manghas L. (Apocynaceae), a semi-mangrove medicinal plant distributed throughout tropical and subtropical countries, is traditionally known to possess analgesic, anti-inflammatory, anti-convulsant, cardiotonic, and hypotensive activity. In vitro and in vivo anti-inflammatory activities of a methanol extract of the leaves of Cerbera manghas and the underlying molecular mechanisms were investigated to validate the ethnopharmacological use of this plant. The effect of Cerbera manghas methanol extract (Cm-ME) on the production of inflammatory mediators and the induction of HCl/EtOH-treated gastritis was explored using macrophages, HEK293 cells, and ICR mice. The molecular targets of this extract and potential active components in Cm-ME were also investigated. Cm-ME inhibited the production of nitric oxide (NO) in lipopolysaccharide (LPS)-treated RAW264.7 cells and peritoneal macrophages in a dose-dependent manner. This extract also suppressed the expression of NO synthase (iNOS) and cyclooxygenase (COX)-2. NF-κB-mediated enhancement of luciferase activity, nuclear translocation of p50 and p65, and phosphorylation of IκBα were markedly reduced by Cm-ME treatment. Direct enzyme assays, reporter gene assays, and immunoprecipitation analysis of kinases revealed Syk and Src as immunopharmacological targets of Cm-ME. Moreover, this extract strongly ameliorated the gastric symptoms induced by HCl/EtOH treatment of mice. Finally, HPLC analysis and pharmacological tests identified kaempferol as an active component of the extract with Src/Syk inhibitory activities. Inhibition of Syk/Src and the NF-κB pathway by kaempferol could play a key role in the anti-inflammatory pharmacological action of Cerbera manghas.
    Journal of ethnopharmacology 12/2013; · 2.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A synthetic Militarin analog-1[(2R,3R,4R,5R)-1,6-bis(4-(2,4,4-trimethylpentan-2-yl)phenoxy) hexane-2,3,4,5-tetraol ] is a novel derivative of constituents from Cordyceps militaris, which has been used to treat a variety of chronic diseases including inflammation, diabetes, hyperglycemia and cancers. Here, we report for the first time the synthesis of Militarin analog-1 (MA-1) and the apoptotic mechanism of MA-1 against human lung cancer cell lines. Treatment with MA-1 significantly inhibited the viability of 3 human lung cancer cell lines. The inhibition of viability and growth in MA-1-treated A549 cells with an IC50 of 5μM were mediated through apoptosis induction, as demonstrated by an increase in DNA fragmentation, sub-G0/G1-DNA fraction, nuclear condensation, and phosphatidylserine exposure. The apoptotic cell death caused mitochondrial membrane permeabilization through regulation of expression of the Bcl-2 family proteins, leading to cytochrome c release in a time-dependent manner. Subsequently, the final stage of apoptosis, activation of caspase-9/-3 and cleavage of poly (ADP ribose) polymerase, was induced. Furthermore, A549 lung cancer cells were more responsive to MA-1 than a bronchial epithelial cell line (BEAS-2B), involving rapid generation of reactive oxygen species (ROS), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) activation. Pharmacological inhibition of ROS generation and JNK /p38 MAPK exhibited attenuated DNA fragmentation in MA-1-induced apoptosis. Oral administration of MA-1 also retarded growth of A549 orthotopic xenografts. In conclusion, the present study indicates that the new synthetic derivative MA-1 triggers mitochondrial apoptosis through ROS generation and regulation of MAPKs and may be a potent therapeutic agent against human lung cancer.
    Toxicology and Applied Pharmacology 10/2013; · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemical derivatization of resveratrol has been widely conducted in an effort to overcome its chemical instability and therapeutic potential. In the present study, we examined the anti-inflammatory effects of resveratrol derivatives containing an amide functionality using in vitro macrophage models that were stimulated by Toll-like receptor (TLR) ligands, and using several animal inflammatory disease models. Of the resveratrol derivatives tested, compound 8 (2,4-dihydroxy-N-(4-hydroxyphenyl)benzamide) most strongly inhibited the production of nitric oxide (NO), tumor necrosis factor (TNF)-α, and prostaglandin E2 (PGE2), as well as the mRNA expression of inducible NO synthase (iNOS), TNF-α, and cyclooxygenase (COX)-2 in lipopolysaccharide (LPS)-activated RAW264.7 cells, differentiated U937 cells, and peritoneal macrophages. The inhibitory activity of compound 8 was apparently mediated by suppressing the phosphorylation of signal transducer and activator of transcription (STAT)-1, STAT-3, STAT-5, and interferon regulatory factor (IRF)-3. The direct target of compound 8 was revealed to be Janus kinase 2 (JAK2) but not TANK-binding kinase (TBK) 1 using the direct kinase assay and analyses of complex formation with these molecules. Additionally, upstream kinase of TBK1 seems to be also inhibited by compound 8. This compound also strongly ameliorated mouse inflammatory symptoms seen in arachidonic acid-induced ear edema, dextran sodium sulfate (DSS)-treated colitis, EtOH/HCl-induced gastritis, collagen type II-triggered arthritis, and acetic acid-induced writhing. Therefore, of the resveratrol derivatives that we tested, compound 8 was determined to have the strongest anti-inflammatory activities in vitro and in vivo and may potentially be developed for use as a novel anti-inflammatory drug.
    Biochemical pharmacology 10/2013; · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ETHNOPHARMACOLOGICAL RELEVANCE: Evodia lepta (Spreng.) Merr., in the Rutaceae family, is a medicinal plant traditionally used to treat inflammatory symptoms such as in meningitis and hepatitis. However, no study has systematically investigated its anti-inflammatory activities including its molecular mechanism. MATERIALS AND METHODS: The effects of a methanol extract from the roots E. lepta (El-ME) were evaluated using lipopolysaccharide (LPS)-treated RAW264.7 cells producing nitric oxide (NO) and prostaglandin E2 (PGE2), and an HCl/ethanol-induced mouse gastritis model. Target molecules were identified by analyzing the activation of transcription factors and their upstream kinases. RESULTS: El-ME reduced the production of NO and PGE2 from LPS-activated RAW264.7 cells in a dose-dependent manner. El-ME also ameliorated the gastritis symptoms of EtOH/HCl-treated mice. The extract suppressed production of mRNA for the inducible NO synthase (iNOS) and cyclooxygenase (COX)-2; the nuclear translocation of nuclear factor (NF)-κB; the phosphorylation of upstream kinases that activate NF-κB; and the kinase activities of Syk and Src. CONCLUSION: The anti-inflammatory effects of El-ME might be due to its suppression of Syk/Src and NF-κB. Considering the in vitro and in vivo efficacy of El-ME, E. lepta could be developed into an anti-inflammatory herbal remedy.
    Journal of ethnopharmacology 06/2013; · 2.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ETHNOPHARMACOLOGICAL RELEVANCE: Archidendron clypearia Jack. (Fabaceae) is a representative ethnomedicinal herbal plant prescribed for various inflammatory diseases such as pharyngolaryngitis and tonsillitis. However, the pharmacology behind this plant's anti-inflammatory properties has not been fully understood. Therefore, in this study, the anti-inflammatory mechanism of a 95% methanol extract (Ac-ME) was explored. MATERIALS AND METHODS: The anti-inflammatory mechanism of Ac-ME on the AP-1 activation pathway, which plays a critical role in the production of prostaglandin (PG)E(2) in RAW264.7 cells and peritoneal macrophages and in induction of acute gastritis caused by HCl/EtOH, was investigated using immunoblotting, immunoprecipitation analyses, and reporter gene activity assays. In particular, enzyme assays and HPLC analysis were employed to identify direct target enzymes of Ac-ME and to detect active chemical components from the plant extract. RESULTS: Ac-ME clearly reduced the nuclear levels of total and phospho-forms of c-Jun, FRA-1, and ATF-2. Consequently, this extract suppressed both the production of PGE(2) in lipopolysaccharide (LPS)-activated RAW264.7 and peritoneal macrophage cells and PGE(2)-dependent induction of gastritis lesion in stomach under EtOH/HCl exposure. Analysis of AP-1 upstream signalling revealed that the AP-1 activation pathway consisting of IRAK1, TRAF6, TAK1, MKK3/6, and p38 was predominantly inhibited by Ac-ME. Similarly, this extract directly blocked the enzyme activity of IRAK1, indicating that this enzyme is an inhibitory target of Ac-ME and is involved in the suppression of the AP-1 pathway. HPLC analysis showed that quercetin, which inhibits PGE(2) production, is an active component in Ac-ME. CONCLUSION: Ac-ME is an ethnomedicinal remedy with an IRAK1/p38/AP-1-targeted inhibitory property. Since AP-1 is a major inflammation-inducing transcription factor, the therapeutic potential of Ac-ME in other AP-1-mediated inflammatory symptoms will be further tested.
    Journal of ethnopharmacology 02/2013; · 2.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ETHNOPHARMACOLOGICAL RELEVANCE: Rhodomyrtus tomentosa (Aiton) Hassk. is a representative Thai medicinal plant traditionally used in South Asian countries to relieve various inflammatory symptoms. However, no systematic studies on its anti-inflammatory activity and mechanisms have been reported. MATERIALS AND METHODS: The effect of the methanol extract from the leaves of this plant (Rt-ME) on the production of inflammatory mediators [nitric oxide (NO) and prostaglandin E(2) (PGE(2))] and the molecular mechanism of Rt-ME-mediated inhibition, including target enzymes, were studied with RAW264.7, peritoneal macrophage, and HEK293 cells. Additionally, the in vivo anti-inflammatory activity of this extract was evaluated with mouse gastritis and colitis models. RESULTS: Rt-ME clearly inhibited the production of NO and PGE(2) in lipopolysaccharide (LPS)-activated RAW264.7 cells and peritoneal macrophages in a dose-dependent manner. According to RT-PCR, immunoblotting and immunoprecipitation analyses and a kinase assay with mRNA, whole cell extract, and nucleus lysates from RAW264.7 cells and mice, it was revealed that Rt-ME was capable of suppressing the activation of both nuclear factor (NF)-κB and activator protein (AP)-1 pathways by directly targeting Syk/Src and IRAK1/IRAK4. CONCLUSION: Rt-ME could have anti-inflammatory properties by suppressing Syk/Src/NF-kB and IRAK1/IRAK4/AP-1 pathways and will be further developed as a herbal remedy for preventive and/or curative purposes in various inflammatory diseases.
    Journal of ethnopharmacology 01/2013; · 2.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ETHNOPHARMACOLOGICAL RELEVANCE: Dryopteris crassirhizoma Nakai (Aspiadaceae) has been traditionally used as an herbal medicine for treating various inflammatory and infectious diseases such as tapeworm infestation, colds, and viral diseases. However, no systematic studies on the anti-inflammatory actions of D. crassirhizoma and its inhibitory mechanisms have been reported. We therefore aimed at exploring the anti-inflammatory effects of 95% ethanol extracts (Dc-EE) of this plant. MATERIALS AND METHODS: The anti-inflammatory effect of Dc-EE on the production of inflammatory mediators in RAW264.7 cells and HCl/EtOH-induced gastritis was examined. Inhibitory mechanisms were also evaluated by exploring activation of transcription factors, their upstream signalling, and target enzyme activities. Finally, the active components from this extract were also identified using HPLC system. RESULTS: Dc-EE diminished the production of nitric oxide (NO) and prostaglandin (PG)E(2) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells in a dose-dependent manner. Dc-EE also downregulated the levels of mRNA expression of pro-inflammatory genes such as inducible NO synthase (iNOS), cyclooxygenase (COX)-2, and TNF-α by inhibiting the activation of activator protein (AP-1) and IRF3. Indeed, the extract strongly blocked the activities of their upstream kinases ERK1 and TBK1. This extract also strongly ameliorated gastritis symptoms stimulated by HCl/EtOH in mice. According to HPLC fingerprinting, resveratrol, quercetin, and kampferol were identified from Dc-EE. CONCLUSION: Dc-EE displays strong anti-inflammatory activity by suppressing ERK/AP-1 and TBK1/IRF3 pathways, which contribute to its major ethno-pharmacological role as an anti-inflammatory and anti-infectious disease remedy.
    Journal of ethnopharmacology 11/2012; · 2.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Osbeckia stellata Buch.-Ham. ex D.Don is traditionally prescribed to treat various inflammatory diseases. However, how this plant is able to modulate inflammatory responses is unknown. This study explored the anti-inflammatory effects of 99% methanol extracts of O. stellata (Os-ME). The anti-inflammatory effect of Os-ME was evaluated by measuring the levels of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells and by determining gastric inflammatory lesions in mice induced by HCl/ethanol (EtOH). The molecular mechanisms of the inhibitions were elucidated by analyzing the activation of transcription factors, upstream signaling cascade, and the kinase activities of target enzymes. Os-ME dose-dependently diminished the release of NO and PGE(2), and suppressed the expression of inducible NO synthase and cyclooxygenase-2 in LPS-treated RAW264.7 cells. Os-ME clearly inhibited the translocation of c-Rel, a subunit of nuclear factor κB (NF-κB), and c-Fos, a subunit of activator protein-1 (AP-1), and their regulatory upstream enzymes including Src, Syk, and IRAK1. Interestingly, orally administered Os-ME ameliorated acute inflammatory symptoms and suppressed the activation of Src, Syk, and IKAK1 induced by HCl/EtOH treatment in mouse stomach. Os-ME can be considered as an orally available anti-inflammatory herbal remedy with Src/Syk/NF-κB and IRAK1/AP-1 inhibitory properties.
    Journal of ethnopharmacology 08/2012; 143(3):876-83. · 2.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aralia continentalis Kitagawa (Araliaceae) is a representative ethnomedicinal herbal plant traditionally prescribed in Korea to relieve various inflammatory symptoms. However, the exact molecular mechanism of its anti-inflammatory activity has not been fully investigated. The effect of the ethanol extract from the roots of this plant (Ac-EE) on the production of the inflammatory mediator nitric oxide (NO) was studied in RAW264.7 cells. Its effect on inflammatory symptoms (gastritis and hepatitis) in mice was also examined. In particular, the molecular inhibitory mechanism was analysed by measuring the activation of transcription factors and their upstream signalling and the kinase activity of target enzymes. Ac-EE dose-dependently suppressed NO production in lipopolysaccharide (LPS)-activated RAW264.7 cells. This extract also displayed curative activity against EtOH/HCl-induced gastritis and LPS-induced hepatitis in mice. Ac-EE-mediated anti-inflammatory activity was found to be at the transcriptional level, as it blocked the activation of the nuclear factor (NF)-κB pathway composed of Syk and Src, according to immunoblotting and immunoprecipitation analyses and a kinase assay with whole and nucleus lysates from RAW264.7 cells and mice. Ac-EE may be developed as a functional herbal remedy targeting Syk- and Src-mediated anti-inflammatory mechanisms. Future work using pre-clinical studies will be needed to investigate this possibility.
    Journal of ethnopharmacology 08/2012; 143(2):746-53. · 2.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cordyceps is a parasitic fungus and has long been used as a traditional Chinese medicine to treat illnesses, promote longevity, increase athletic power, and relieve exhaustion and cancer. In this study, we reveal the mechanisms underlying apoptosis induced by Cordyceps pruinosa butanol fraction (CPBF) in the human cervical adenocarcinoma cell line, HeLa. Proliferation and apoptosis of cells were examined by MTT assay, DNA fragmentation, phosphatidyl serine distribution assay, Western blot analysis, and immunocytochemistry. To determine the association between CPBF related apoptosis and ROS, electron spin resonance (ESR) trapping experiments were used. CPBF inhibited proliferation and induced apoptosis in HeLa cells in a dose-dependent manner using a MTT assay, DNA fragmentation, and a phosphatidyl serine distribution assay. Western blot analysis showed that apoptosis in HeLa cells was caspase-3- and -9-dependent. Proteolytic cleavage of PARP and the release of cytochrome c from the mitochondria into the cytosol were significantly increased and the Bcl-2/Bax protein ratio was decreased. Apoptosis induced by CPBF was not prevented by various antioxidants. These results indicate that apoptotic effects of CPBF on HeLa cells are mediated by mitochondria-dependent death-signaling pathway independent of reactive oxygen species, suggesting that CPBF might be effective as an anti-proliferative agent for cancer.
    Journal of ethnopharmacology 02/2010; 128(2):342-51. · 2.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mushroom Phellinus linteus has been known to exhibit potent biological activity. In contrast to the immuno-potentiating properties of Phellinus linteus, the anti-inflammatory properties of Phellinus linteus have rarely been investigated. Recently, ethanol extract and n-BuOH fractions from Phellinus linteus were deemed most effective in anti-inflammatory activity in RAW 264.7 macrophages. The regulatory mechanisms of Phellinus linteus butanol fractions (PLBF) on the pharmacological and biochemical actions of macrophages involved in inflammation have not been clearly defined yet. In the present study, we tested the role of PLBF on anti-inflammation patterns in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. To investigate the mechanism by which PLBF inhibits NO and PGE2 production as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, we examined the activation of IkappaB and MAPKs in LPS-activated macrophages. PLBF clearly inhibited nuclear translocation of NF-kappaB p65 subunits, which correlated with PLBF's inhibitory effects on IkappaBalpha phosphorylation and degradation. PLBF also suppressed the activation of mitogen-activated protein (MAP) kinases including p38 and stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Furthermore, macrophages stimulated with LPS generated ROS via activation of membrane-bound NADPH oxidase, and ROS played an important role in the activation of nuclear factor-kappaB (NF-kappaB) and MAPKs. We demonstrated that PLBF directly blocked intracellular accumulation of reactive oxygen species in RAW 264.7 cells stimulated with LPS much as the NADPH oxidase inhibitors, diphenylene iodonium, and antioxidant pyrrolidine dithiocarbamate did. The suppression of NADPH oxidase also inhibited NO production and iNOS protein expression. Cumulatively, these results suggest that PLBF inhibits the production of NO and PGE2 through the down-regulation of iNOS and COX-2 gene expression via ROS-based NF-kappaB and MAPKs activation. Thus, PLBF may provide a potential therapeutic approach for inflammation-associated disorders.
    Journal of Ethnopharmacology 01/2008; 114(3):307-15. · 2.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cordyceps militaris, a caterpillar-grown traditional medicinal mushroom, produces an important bioactive compound, cordycepin (3'-deoxyadenosine). Cordycepin is reported to possess many pharmacological activities including immunological stimulating, anti-cancer, anti-virus and anti-infection activities. The molecular mechanisms of cordycepin on pharmacological and biochemical actions of macrophages in inflammation have not been clearly elucidated yet. In the present study, we tested the role of cordycepin on the anti-inflammation cascades in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. In LPS-activated macrophage, nitric oxide (NO) production was inhibited by butanol fraction of C. militaris and the major component of C. militaris butanol faction was identified as cordycepin by high performance liquid chromatography. To investigate the mechanism by which cordycepin inhibits NO production and inducible nitric oxide synthase (iNOS) expression, we examined the activation of Akt and MAP kinases in LPS-activated macrophage. Cordycepin markedly inhibited the phosphorylation of Akt and p38 in dose-dependent manners in LPS-activated macrophage. Moreover, cordycepin suppressed tumor necrosis factor (TNF-alpha) expression, IkappaB alpha phosphorylation, and translocation of nuclear factor-kappaB (NF-kappaB). The expressions of cycloxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were significantly decreased in RAW 264.7 cell by cordycepin. Taken together, these results suggest that cordycepin inhibits the production of NO production by down-regulation of iNOS and COX-2 gene expression via the suppression of NF-kappaB activation, Akt and p38 phosphorylation. Thus, cordycepin may provide a potential therapeutic approach for inflammation-associated disorders.
    European Journal of Pharmacology 10/2006; 545(2-3):192-9. · 2.59 Impact Factor

Publication Stats

182 Citations
34.66 Total Impact Points

Institutions

  • 2006–2014
    • Kangwon National University
      • • Department of Biochemistry
      • • Department of Biochemistry
      • • Department of Applied Biology
      Shunsen, Gangwon, South Korea
  • 2012–2013
    • Sungkyunkwan University
      • Department of Genetic Engineering
      Seoul, Seoul, South Korea