Are you Dana M Murbach?

Claim your profile

Publications (5)12.18 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Although automotive friction products (brakes and manual clutches) historically contained chrysotile asbestos, industrial hygiene surveys and epidemiologic studies of auto mechanics have consistently shown that these workers are not at an increased risk of developing asbestos-related diseases. Airborne asbestos levels during brake repair and brake parts handling have been well-characterized, but the potential exposure to airborne asbestos fibers during the handling of clutch parts has not been examined. In this study, breathing zone samples on the lapel of a volunteer worker (n=100) and area samples at bystander (n=50), remote area (n=25), and ambient (n=9) locations collected during the stacking, unpacking, and repacking of boxes of asbestos-containing clutches, and the subsequent cleanup and clothes handling, were analyzed by phase contrast microscopy (PCM) and transmission electron microscopy (TEM). In addition, fiber morphology and size distribution was evaluated using X-ray diffraction, polarized light microscopy, and ISO analytical methods. It was observed that the (1) airborne asbestos concentrations increased with the number of boxes unpacked and repacked, (2) repetitive stacking of unopened boxes of clutches resulted in higher asbestos concentrations than unpacking and repacking the boxes of clutches, (3) cleanup and clothes handling tasks yielded very low asbestos concentrations. Fiber size and morphology analyses showed that amphibole fibers were not detected in the clutches and that the vast majority (>95%) of the airborne chrysotile fibers were less than 20 microm in length. Applying the ratio of asbestos fibers:total fibers (including non-asbestos) as determined by TEM to the PCM results, it was found that 30-min average airborne chrysotile concentrations (PCM adjusted) were 0.026+/-0.004 f/cc or 0.100+/-0.017 f/cc for a worker unpacking and repacking 1 or 2 boxes of clutches, respectively. The 30-min PCM adjusted average airborne asbestos concentrations at bystander locations ranged from 0.002+/-0.001 f/cc and 0.004+/-0.002 f/cc when 1 or 2 boxes of clutches were handled, respectively. Estimated 8-h TWA asbestos exposures for a worker handling 1 or 2 boxes of clutches over a workday ranged from 0.002 to 0.006 f/cc. The 30-min PCM adjusted average airborne asbestos concentration for a worker continuously stacking unopened boxes of clutches was 0.212+/-0.014 f/cc; the 8-h TWA was 0.013 f/cc. Additionally, 30-min PCM adjusted average airborne asbestos concentrations following cleanup and clothing handling were 0.002+/-0.001 f/cc and 0.002+/-0.002 f/cc, respectively, both resulting in estimated 8-h TWA asbestos exposures of 0.0001 f/cc. The results of this study indicate that the handling, unpacking, and repacking of clutches, and the subsequent cleanup and clothes handling by a worker within a short-term period or over the entire workday, result in exposures below the historical and current short-term and 8-h occupational exposure limits for asbestos.
    Regulatory Toxicology and Pharmacology 07/2008; 51(1):87-97. · 2.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The exposure of shipyard workers to asbestos has been frequently investigated during the installation, repair or removal of asbestos insulation. The same level of attention, however, has not been directed to asbestos exposure of maritime seamen or sailors. In this paper, we assemble and analyze historical industrial hygiene (IH) data quantifying airborne asbestos concentrations onboard maritime shipping vessels between 1978 and 1992. Air monitoring and bulk sampling data were compiled from 52 IH surveys conducted on 84 different vessels, including oil tankers and cargo vessels, that were docked and/or at sea, but these were not collected during times when there was interaction with asbestos-containing materials (ACMs). One thousand and eighteen area air samples, 20 personal air samples and 24 air samples of unknown origin were analyzed by phase contrast microscopy (PCM); 19 area samples and six samples of unknown origin were analyzed by transmission electron microscopy (TEM) and 13 area air samples were analyzed by scanning electron microscopy (SEM). In addition, 482 bulk samples were collected from suspected ACMs, including insulation, ceiling panels, floor tiles, valve packing and gaskets. Fifty-three percent of all PCM and 4% of all TEM samples were above their respective detection limits. The average airborne concentration for the PCM area samples (n = 1018) was 0.008 fibers per cubic centimeter (f cc(-1)) (95th percentile of 0.040 f cc(-1)). Air concentrations in the living and recreational areas of the vessels (e.g. crew quarters, common rooms) averaged 0.004 f cc(-1) (95th percentile of 0.014 f cc(-1)), while air concentrations in the engine rooms and machine shops averaged 0.010 f cc(-1) (95th percentile of 0.068 f cc(-1)). Airborne asbestos concentrations were also classified by vessel type (cargo, tanker or Great Lakes), transport status (docked or underway on active voyage) and confirmed presence of ACM. Approximately 1.3 and 0% of the 1018 area samples analyzed by PCM exceeded 0.1 and 1 f cc(-1), respectively. This data set indicates that historic airborne asbestos concentrations on these maritime shipping vessels, when insulation-handling activities were not actively being performed, were consistently below contemporaneous US occupational standards from 1978 until 1992, and nearly always below the current permissible exposure limit of 0.1 f cc(-1).
    Annals of Occupational Hygiene 07/2008; 52(4):267-79. · 2.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Industrial hygiene surveys and epidemiologic studies of auto mechanics have shown that these workers are not at an increased risk of asbestos-related disease; however, concerns continue to be raised regarding asbestos exposure from asbestos-containing brakes. Handling new asbestos-containing brake components has recently been suggested as a potential source of asbestos exposure. A simulation study involving the unpacking and repacking of 105 boxes of brakes (for vehicles ca. 1946-80), including 62 boxes of brake pads and 43 boxes of brake shoes, was conducted to examine how this activity might contribute to both short-term and 8-h time-weighted average exposures to asbestos. Breathing zone samples on the lapel of a volunteer worker (n = 80) and area samples at bystander (e.g., 1.5 m from worker) (n = 56), remote area (n = 26) and ambient (n = 10) locations collected during the unpacking and repacking of boxes of asbestos-containing brakes were analyzed by phase contrast microscopy and transmission electron microscopy. Exposure to airborne asbestos was characterized for a variety of parameters including the number of boxes handled, brake type (i.e. pads versus shoes) and the distance from the activity (i.e. worker, bystander and remote area). This study also evaluated the fiber size and morphology distribution according to the International Organization for Standardization analytical method for asbestos. It was observed that (i) airborne asbestos concentrations increased with the number of boxes unpacked and repacked, (ii) handling boxes of brake pads resulted in higher worker asbestos exposures compared to handling boxes of brake shoes, (iii) cleanup and clothes-handling tasks produced less airborne asbestos than handling boxes of brakes and (iv) fiber size and morphology analysis showed that while the majority of fibers were free (e.g. not associated with a cluster or matrix), <30% were respirable and even fewer were of the size range (>20 microm length) considered to pose the greatest risk of asbestos-related disease. It was found that average airborne chrysotile concentrations (30 min) ranged from 0.086 to 0.368 and 0.021 to 0.126 f cc(-1) for a worker unpacking and repacking 4-20 boxes of brake pads and 4-20 boxes of brake shoes, respectively. Additionally, average airborne asbestos exposures (30 min) at bystander locations ranged from 0.004 to 0.035 and 0.002 to 0.011 f cc(-1) when 4-20 boxes of brake pads and 4-20 boxes of brake shoes were handled, respectively. These data show that a worker handling a relatively large number of boxes of brakes over short periods of time will not be exposed to airborne asbestos in excess of its historical or current short-term occupational exposure limits.
    Annals of Occupational Hygiene 06/2008; 52(6):463-79. · 2.16 Impact Factor
  • Epidemiology. 01/2006; 17.
  • Epidemiology 01/2006; 17. · 5.74 Impact Factor