D. N. Burrows

William Penn University, Worcester, Massachusetts, United States

Are you D. N. Burrows?

Claim your profile

Publications (655)1012.98 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present new {\it Hubble Space Telescope} images of high-velocity H-$\alpha$ and Lyman-$\alpha$ emission in the outer debris of SN~1987A. The H-$\alpha$ images are dominated by emission from hydrogen atoms crossing the reverse shock. For the first time we observe emission from the reverse shock surface well above and below the equatorial ring, suggesting a bipolar or conical structure perpendicular to the ring plane. Using the H$\alpha$ imaging, we measure the mass flux of hydrogen atoms crossing the reverse shock front, in the velocity intervals ($-$7,500~$<$~$V_{obs}$~$<$~$-$2,800 km s$^{-1}$) and (1,000~$<$~$V_{obs}$~$<$~7,500 km s$^{-1}$), $\dot{M_{H}}$ = 1.2~$\times$~10$^{-3}$ M$_{\odot}$ yr$^{-1}$. We also present the first Lyman-$\alpha$ imaging of the whole remnant and new $Chandra$ X-ray observations. Comparing the spatial distribution of the Lyman-$\alpha$ and X-ray emission, we observe that the majority of the high-velocity Lyman-$\alpha$ emission originates interior to the equatorial ring. The observed Lyman-$\alpha$/H-$\alpha$ photon ratio, $\langle$$R(L\alpha / H\alpha)$$\rangle$ $\approx$~17, is significantly higher than the theoretically predicted ratio of $\approx$ 5 for neutral atoms crossing the reverse shock front. We attribute this excess to Lyman-$\alpha$ emission produced by X-ray heating of the outer debris. The spatial orientation of the Lyman-$\alpha$ and X-ray emission suggests that X-ray heating of the outer debris is the dominant Lyman-$\alpha$ production mechanism in SN 1987A at this phase in its evolution.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this program we propose to use a total of 0.8 hr to obtain 3.6 and 4.5 micron photometry of SNR 1987A at four additional epochs beyond day 10000 after the explosion. The emission in these two IRAC bands may arise from a hot dust component residing in the equatorial ring (ER) with a distinctly different spectral shape and temperature from the dominant 180 K silicate dust component in the ER. The dust in the ER is collisionally-heated by the SN blast wave that also gives rise to the soft X-ray emission from the ER. The intensity in the mid-IR emission (24 micron) was generally well correlated with that of the X-ray emission. However, the continued monitoring of the 3.6 and 4.5 micron emission now seems to show that at these wavelengths the IR emission has begun to fade, and is no longer tracking the brightness of the soft X-ray emission. These differences could stem from a variety of causes, including the sputtering of the dust or changes in the morphology of the ER. Ongoing X-ray observations of the remnant are taking place. Supplementing these with IR observations is essential for determining the nature and the evolution of this hot dust component. Finally, the observations may still reveal the appearance of a new emission component from the SN ejecta which is currently interacting with the reverse shock. These observations will complete the record of Spitzer's observations of SN 1987A, spanning more than 12 years from launch to end of mission.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the development of a new Teledyne Imaging Systems hybrid CMOS x-ray detector called the Speedster-EXD which is capable of event-triggered read-out. Hybrid CMOS detectors currently have many advantages over CCDs including lower susceptibility to radiation damage, lower power consumption, and faster read out time to avoid pile-up. In addition to these advantages, the Speedster-EXD has new in-pixel circuitry which includes CDS subtraction to reduce read noise and a CTIA amplifier to eliminate interpixel capacitance crosstalk. The new circuitry also includes an in-pixel comparator that triggers on x-ray events. The comparator feature allows the detector to only read pixels in which an x-ray is detected. This feature increases the detector array effective frame rate by orders of magnitude. The current advantages of hybrid CMOS x-ray detectors combined with the new in-pixel circuitry makes the Speedster-EXD an ideal candidate for future high throughput x-ray missions requiring large-format silicon imagers.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This work addresses the issue of X-ray monitoring for astrophysical applications. The proposed wide-field optical system has not been used in space yet. The proposed novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases the intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. The optical system could be used in a student rocket experiment at University of Colorado. Ideal opportunity is to extend the CubeSat of Pennsylvania State University with the hard X-ray telescope demonstrator consisting of an optical module and Timepix detector.
    SPIE Optical Engineering + Applications; 09/2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Si Hybrid CMOS detectors (HCDs) are sensitive to X-rays between approximately 0.2 – 20 keV. HCDs can provide superior performance to traditional CCDs in multiple areas: faster read out time, windowed read out mode, less susceptible to radiation & micrometeoroid damage, and lower power consumption. X-ray detectors designed for use in astronomical observatories must have an optical blocking filter to prevent the detectors from being saturated by optical light. We have previously reported on the successful deposition of an Al optical blocking layer directly onto the surface of HCDs. These blocking filters were deposited with multiple thicknesses from 180 – 1000 Å and successfully block optical light at all thicknesses, with minimal impact expected on quantum efficiency at the energies of interest for these detectors. The thin Al layer is not expected to impact quantum efficiency at the energies of interest for these detectors. We report energy dependent soft X-ray quantum efficiency measurements for multiple HCDs with different optical blocking filter thicknesses.
    SPIE Astronomical Telescopes + Instrumentation; 07/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have performed a deep Chandra observation of Galactic Type Ia supernova remnant G299.2-2.9. Here we report the initial results from our imaging and spectral analysis. The observed abundance ratios of the central ejecta are in good agreement with those predicted by delayed-detonation Type Ia supernovae models. We reveal inhomogeneous spatial and spectral structures of metal-rich ejecta in G299.2-2.9. The Fe/Si abundance ratio in the northern part of the central ejecta is higher than that in the southern part. An elongation of ejecta material extends out to the western outermost boundary of the remnant. In this western elongation, both the Si and Fe are enriched with a similar abundance ratio to that in the southern part of the central nebula. These structured distributions of metal-rich ejecta material suggest that this Type Ia supernova might have undergone a significantly asymmetric explosion and/or has been expanding into a structured medium.
    The Astrophysical Journal Letters 06/2014; 792(1). DOI:10.1088/2041-8205/792/1/L20 · 5.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a sample of 27 GRBs with detailed Swift light curves supplemented by late time Chandra observations. To answer the missing jet-break problem in general, we develop a numerical simulation based model which can be directly fit to the data using Monte Carlo methods. Our numerical model takes into account all the factors that can shape a jet-break: (i) lateral expansion (ii) edge effects and (iii) off-axis effects. Our results provide improved fits to the light curves and constraints on physical parameters. More importantly, our results suggest that off-axis effects are important and must be included in interpretations of GRB jet breaks.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a sample of 27 GRBs with detailed Swift light curves supplemented by late time Chandra observations. By fitting to empirical mathematical functions, we find a higher fraction of jet-break candidates 56% than previous studies using Swift-only samples (12%) and different analysis techniques. To answer the missing jet-break problem in general, we further develop a numerical simulation based model which can be directly fit to the data using a Bayesian Monte Carlo method. Our numerical model takes into account all the factors that can shape a jet-break: (i) lateral expansion (ii) edge effects and (iii) off-axis effects. Comparing to the empirical function fit, our results provide improved fits to the light curves and better constraints on physical parameters. More importantly, our results suggest that off-axis effects are important and must be included in interpretations of GRB jet breaks.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GRB~130925A was an unusual GRB, consisting of 3 distinct episodes of high-energy emission spanning $\sim$20 ks, making it a member of the proposed category of `ultra-long' bursts. It was also unusual in that its late-time X-ray emission observed by \swift\ was very soft, and showed a strong hard-to-soft spectral evolution with time. This evolution, rarely seen in GRB afterglows, can be well modelled as the dust-scattered echo of the prompt emission, with stringent limits on the contribution from the normal afterglow (i.e. external shock) emission. We consider and reject the possibility that GRB~130925A was some form of tidal disruption event, and instead show that if the circumburst density around GRB~130925A is low, the long duration of the burst and faint external shock emission are naturally explained. Indeed, we suggest that the ultra-long GRBs as a class can be explained as those with low circumburst densities, such that the deceleration time (at which point the material ejected from the nascent black hole is decelerated by the circumburst medium) is $\sim$20 ks, as opposed to a few hundred seconds for the normal long GRBs.
    Monthly Notices of the Royal Astronomical Society 03/2014; 444(1). DOI:10.1093/mnras/stu1459 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the initial results from our deep Chandra observation (450 ks) of O-rich supernova remnant (SNR) B0049--73.6 in the Small Magellanic Cloud. We detect metal-rich ejecta features extending out to the outermost boundary of B0049--73.6, which were not seen in the previous data with a shorter exposure. The central nebula is dominated by emission from reverse-shocked ejecta material enriched in O, Ne, Mg, and Si. O-rich ejecta distribution is relatively smooth throughout the central nebula. In contrast the Si-rich material is highly structured. These results suggest that B0049--73.6 was produced by an asymmetric core-collapse explosion of a massive star. The estimated abundance ratios among these ejecta elements are in plausible agreement with the nucleosynthesis products from the explosion of a $13-15M_{\odot}$ progenitor. The central ejecta nebula extends to $\sim$9 pc from the SNR center. This suggests that the contact discontinuity may be located at a further distance from the SNR center than the previous estimate. We estimate the Sedov age of $\sim$17000 yr and an explosion energy of $E_0$ $\sim1.7 \times~10^{51}$ erg for B0049--73.6.
    The Astrophysical Journal 01/2014; 791(1). DOI:10.1088/0004-637X/791/1/50 · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Starting in 2013 February, Swift has been performing short daily monitoring observations of the G2 gas cloud near Sgr A* with the X-Ray Telescope to determine whether the cloud interaction leads to an increase in the flux from the Galactic center. On 2013 April 24 Swift detected an order of magnitude rise in the X-ray flux from the region near Sgr A*. Initially thought to be a flare from Sgr A*, detection of a short hard X-ray burst from the same region by the Burst Alert Telescope suggested that the flare was from an unresolved new Soft Gamma Repeater, SGR J1745-29. Here we present the discovery of SGR J1745-29 by Swift, including analysis of data before, during, and after the burst. We cover the entire light-curve of the SGR outburst so far, from discovery through to the source entering a Swift Sun constraint in November 2013. Thanks to the interest in G2 and it's location near the Galactic Center, SGR J1745-29 has become one of the best monitoring SGRs in outburst yet seen.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GRB 110918A is the brightest long GRB detected by Konus-WIND during its 19 years of continuous observations and the most luminous GRB ever observed since the beginning of the cosmological era in 1997. We report on the final IPN localization of this event and its detailed multiwavelength study with a number of space-based instruments. The prompt emission is characterized by a typical duration, a moderare $E_{peak}$ of the time-integrated spectrum, and strong hard-to-soft evolution. The high observed energy fluence yields, at z=0.984, a huge isotropic-equivalent energy release $E_{iso}=(2.1\pm0.1)\times10^{54}$ erg. The record-breaking energy flux observed at the peak of the short, bright, hard initial pulse results in an unprecedented isotropic-equivalent luminosity $L_{iso}=(4.7\pm0.2)\times10^{54}$erg s$^{-1}$. A tail of the soft gamma-ray emission was detected with temporal and spectral behavior typical of that predicted by the synchrotron forward-shock model. Swift/XRT and Swift/UVOT observed the bright afterglow from 1.2 to 48 days after the burst and revealed no evidence of a jet break. The post-break scenario for the afterglow is preferred from our analysis, with a hard underlying electron spectrum and ISM-like circumburst environment implied. We conclude that, among multiple reasons investigated, the tight collimation of the jet must have been a key ingredient to produce this unusually bright burst. The inferred jet opening angle of 1.7-3.4 deg results in reasonable values of the collimation-corrected radiated energy and the peak luminosity, which, however, are still at the top of their distributions for such tightly collimated events. We estimate a detection horizon for a similar ultraluminous GRB of $z\sim7.5$ for Konus-WIND, and $z\sim12$ for Swift/BAT, which stresses the importance of GRBs as probes of the early Universe.
    The Astrophysical Journal 12/2013; 779(2):151. DOI:10.1088/0004-637X/779/2/151 · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this program we propose to use a total of 0.4 hr to obtain 3.6 and 4.5 micron photometry of SNR 1987A at two additional epochs beyond day 9800 after the explosion. The emission in these two IRAC bands arises from a hot dust component residing in the equatorial ring (ER) with a distinctly different spectral shape and temperature from the dominant 180 K silicate dust component in the ER. The dust in the ER is collisionally-heated by the SN blast wave that also gives rise to the soft X-ray emission from the ER. The intensity in the IR emission is generally well correlated with that of the X-ray emission. However, the most recent X-ray observations have showed a difference in the evolution of their respective light curves. These differences could stem from a variety of causes, including the sputtering of the dust or changes in the morphology of the ER. Ongoing X-ray observations of the remnant are taking place. Supplementing these with IR observations is essential for determining the nature and the evolution of this hot dust component. Finally, the observations may reveal the appearance of a new emission component from the SN ejecta which is currently interacting with the reverse shock.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on the characterization of four Teledyne Imaging Systems HAWAII Hybrid Si CMOS detectors designed for X-ray detection. Three H1RG detectors were studied along with a specially configured H2RG. Read noise measurements were performed, with the lowest result being 7.1 e− RMS. Interpixel capacitive crosstalk (IPC) was measured for the three H1RGs and for the H2RG. The H1RGs had IPC upper limits of 4.0–5.5% (up & down pixels) and 8.7–9.7% (left & right pixels), indicating a clear asymmetry. Energy resolution is reported for two X-ray lines, 1.5 & 5.9 keV, at multiple temperatures between 150 and 210 K. The best resolution measured at 5.9 keV was 250 eV (4.2%) at 150 K, with IPC contributing significantly to this measured energy distribution. The H2RG, with a unique configuration designed to decrease the capacitive coupling between ROIC pixels, had an IPC of 1.8±1.0% indicating a dramatic improvement in IPC with no measurable asymmetry. We also measured dark current as a function of temperature for each detector. For the detector with the lowest dark current, at 150 K, we measured a dark current of 0.020±0.001 (e− s−1 pixel−1). There is also a consistent break in the fit to the dark current data for each detector. Above 180 K, all the data can be fit by the product of a power law in temperature and an exponential. Below 180 K the dark current decreases more slowly; a shallow power law or constant must be added to each fit, indicating a different form of dark current is dominant in this temperature regime. Dark current figures of merit at 293 K are estimated from the fit for each detector.
    Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 07/2013; 717:83–93. DOI:10.1016/j.nima.2013.03.057 · 1.32 Impact Factor

Publication Stats

6k Citations
1,012.98 Total Impact Points

Institutions

  • 2000–2014
    • William Penn University
      Worcester, Massachusetts, United States
  • 1993–2014
    • Pennsylvania State University
      • Department of Astronomy and Astrophysics
      University Park, Maryland, United States
  • 2012
    • Guilin University of Technology
      Ling-ch’uan, Guangxi Zhuangzu Zizhiqu, China
  • 2008
    • Universities Space Research Association
      Houston, Texas, United States
  • 2007
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
    • University of Nevada, Las Vegas
      Las Vegas, Nevada, United States
  • 2005–2007
    • University of Leicester
      • Department of Physics and Astronomy
      Leiscester, England, United Kingdom
  • 2006
    • Ioffe Physical Technical Institute
      Sankt-Peterburg, St.-Petersburg, Russia
    • University of Milan
      • Department of Physics
      Milano, Lombardy, Italy
    • University of North Carolina at Chapel Hill
      • Department of Physics and Astronomy
      Chapel Hill, NC, United States