Curt E Harper

University of Alabama at Birmingham, Birmingham, Alabama, United States

Are you Curt E Harper?

Claim your profile

Publications (5)16.65 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemoprevention utilizing dietary agents is an effective means to slow the development of prostate cancer. We evaluated the potential additive and synergistic effects of genistein and resveratrol for suppressing prostate cancer in the Simian Virus-40 T-antigen (SV-40 Tag) targeted probasin promoter rat model, a transgenic model of spontaneously developing prostate cancer. Rats were fed genistein or resveratrol (250 mg/kg AIN-76A diet) alone and in combination, and a low-dose combination (83 mg genistein + 83 mg resveratrol/kg diet). Histopathology and mechanisms of action studies were conducted at 30 and 12 weeks of age, respectively. Genistein, resveratrol, and the high-dose combination treatments suppressed prostate cancer. The low-dose combination did not elicit protection against prostate cancer and was most likely below the effective dose for causing significant histopathological changes. Total genistein and resveratrol concentrations in the blood reached 2,160 and 211 nM, respectively in rats exposed to the single treatments. Polyphenol treatments decreased cell proliferation and insulin-like growth factor-1 (IGF-1) protein expression in the prostate. In addition, genistein as a single agent induced apoptosis and decreased steroid receptor coactivator-3 (SRC-3) in the ventral prostate (VP). Genistein and resveratrol, alone and in combination, suppress prostate cancer development in the SV-40 Tag model. Regulation of SRC-3 and growth factor signaling proteins are consistent with these nutritional polyphenols reducing cell proliferation and increasing apoptosis in the prostate.
    The Prostate 09/2009; 69(15):1668-82. · 3.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer is the second most frequently diagnosed cancer in men. Animal models that closely mimic clinical disease in humans are invaluable tools in the fight against prostate cancer. Recently, a Simian Virus-40 T-antigen (SV-40 Tag) targeted probasin promoter rat model was developed. This model, however, has not been extensively characterized; hence we have investigated the ontogeny of prostate cancer and determined the role of sex steroid receptor and insulin-like growth factor-1 (IGF-1) signaling proteins in the novel SV-40 Tag rat. The SV-40 Tag rat was histopathologically characterized for time to tumor development, incidence and multiplicity and in the ventral, dorsal, lateral and anterior lobes of the prostate. Immunoassay techniques were employed to measure cell proliferation, apoptosis, and sex steroid receptor and growth factor signaling-related proteins. Steroid hormone concentrations were measured via coated well enzyme linked immunosorbent assay (ELISA) kits. Prostatic intraepithelial neoplasia (PIN) and well-differentiated prostate cancer developed as early as 2 and 10 weeks of age, respectively in the ventral prostate (VP) followed by in the dorsolateral (DLP). At 8 weeks of age, testosterone and dihydrotestosterone (DHT) concentrations in SV-40 Tag rats were increased when compared to non-transgenic rats. High cell proliferation and apoptotic indices were found in VP and DLP of transgenic rats. Furthermore, we observed increased protein expression of androgen receptor, IGF-1, IGF-1 receptor, and extracellular signal-regulated kinases in the prostates of SV-40 Tag rats. The rapid development of PIN and prostate cancer in conjunction with the large prostate size makes the SV-40 Tag rat a useful model for studying prostate cancer. This study provides evidence of the role of sex steroid and growth factor proteins in prostate cancer development and defines appropriate windows of opportunity for preclinical trials and aids in the rational design of chemoprevention, intervention, regression, and therapeutic studies using prostate cancer rodent models.
    BMC Cancer 02/2009; 9:30. · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer (PCa) is the second leading cause of cancer-related death in men in the United States. Many men have implemented purported chemopreventive agents into their daily diet in an attempt to delay the early onset of a PCa. Green tea polyphenols, one such agent, has been shown to be chemopreventive in skin, breast, and prostate cancers. We hypothesized that Epigallocatechin-3-Gallate (EGCG), the major polyphenol found in green tea, will exert its chemopreventive effect in the prostate via regulation of sex steroid receptor, growth factor-signaling, and inflammatory pathways. Five-week-old male TRAMP (Transgenic Adenocarcinoma Mouse Prostate) offspring were fed AIN-76A diet and 0.06% EGCG in tap water. Animals were sacrificed at 28 weeks of age and the entire prostates were scored histopathologically. In addition, animals were sacrificed at 12 weeks of age and ventral (VP) and dorsolateral (DLP) prostates were removed for histopathological evaluation and immunoblot analyses or ELISA. EGCG, inhibited early but not late stage PCa in the current study. In the VP, EGCG significantly reduced cell proliferation, induced apoptosis, and decreased androgen receptor (AR), insulin-like growth factor-1 (IGF-1), IGF-1 receptor (IGF-1R), phospho-extracellular signal-regulated kinases 1 and 2 (phospho-ERKs 1 and 2), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). The attenuation of the AR, the down-regulation of potent growth factor IGF-1, modulation of inflammation biomarkers, and decrease in the MAPK signaling may contribute to the reduction in cell proliferation and induction of apoptosis and hence provide a biochemical basis for EGCG suppressing PCa without toxicity.
    The Prostate 11/2007; 67(14):1576-89. · 3.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resveratrol, a natural polyphenolic phytochemical, has been reported to act as an antioxidant and provide anticancer activities. We hypothesized that resveratrol would exert a chemopreventive effect against prostate cancer via regulation of sex steroid receptor and growth factor signaling pathways. In the current study, Transgenic Adenocarcinoma Mouse Prostate males were fed resveratrol (625 mg resveratrol per kg AIN-76A diet) or phytoestrogen-free, control diet (AIN-76A) starting at 5 weeks of age. Mechanisms of action and histopathology studies were conducted at 12 and 28 weeks of age, respectively. Resveratrol in the diet significantly reduced the incidence of poorly differentiated prostatic adenocarcinoma by 7.7-fold. In the dorsolateral prostate, resveratrol significantly inhibited cell proliferation, increased androgen receptor, estrogen receptor-beta, and insulin-like growth factor-1 receptor, and significantly decreased insulin-like growth factor (IGF)-1 and phospho-extracellular regulating kinase 1 (phospho-ERK 1). In the ventral prostate, resveratrol significantly reduced cell proliferation and phospho-ERKs 1 and 2, but did not significantly alter insulin-like growth factor-1 receptor and IGF-1. Serum total testosterone, free testosterone, estradiol, dihydrotestosterone and sex hormone-binding globulin (SHBG) concentrations and Simian Virus-40 large T antigen expression in the prostate were not altered in resveratrol-treated mice. Total resveratrol concentration in the blood serum of 12-week-old mice treated for 3 weeks with 625 mg resveratrol per kg diet was 52 +/- 18 nM. The decrease in cell proliferation and the potent growth factor, IGF-1, the down-regulation of downstream effectors, phospho-ERKs 1 and 2 and the increase in the putative tumor suppressor, estrogen receptor-beta, provide a biochemical basis for resveratrol suppressing prostate cancer development.
    Carcinogenesis 10/2007; 28(9):1946-53. · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 1. Almost 200,000 men and women in the United States will be diagnosed with prostate and breast cancers, respectively, this year alone. It has become increasingly clear that environmental exposures, including diet, influence the risk of both breast and prostate cancers. 2. Two natural polyphenols that have received much interest in the field of cancer prevention are genistein, an isoflavone component of soy, and resveratrol, a phytoalexin found in red grapes and red wine. Epidemiological and in vitro laboratory data suggest that these polyphenols may protect against breast and prostate cancers. 3. Using in vivo rodent models of breast and prostate cancers, our lab and others have shown that genistein and resveratrol, administered alone or in combination, can suppress both breast and prostate carcinogenesis. 4. Genistein, at concentrations resulting in serum levels comparable to humans on a high soy diet, suppressed mammary tumor multiplicity through enhanced mammary gland maturation and a reduction in the targets of mammary carcinogens. Genistein also reduced the incidence of aggressive prostate tumors in a transgenic mouse model of prostate cancer. 5. Resveratrol, administered in the diet, suppressed mammary tumor multiplicity and increased tumor latency. Reductions in mammary epithelial cell proliferation and increased apoptosis help to explain these mammary protective effects. Resveratrol was also able to reduce the incidence of poorly differentiated prostate tumors through modulation of cell proliferation and critical growth factor pathways in the rodent prostate. 6. Chemoprevention of both breast and prostate cancers with combinational genistein and resveratrol treatments was also demonstrated. Both resveratrol and genistein, alone and in combination, were effective at suppressing breast and prostate carcinogenesis using in vivo models.

Publication Stats

138 Citations
16.65 Total Impact Points

Top Journals

Institutions

  • 2007–2009
    • University of Alabama at Birmingham
      • Department of Pharmacology and Toxicology
      Birmingham, Alabama, United States