Chun-Ching Yu

National Chung Cheng University, Chia-i-hsien, Taiwan, Taiwan

Are you Chun-Ching Yu?

Claim your profile

Publications (2)9.77 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A transient 10(6)-fold concentration of double-layer counterions by a high-intensity electric field is demonstrated at the exit pole of a millimeter-sized conducting nanoporous granule that permits ion permeation. The phenomenon is attributed to a unique counterion screening dynamics that transforms half of the surface field into a converging one toward the ejecting pole. The resulting surface conduction flux then funnels a large upstream electro-osmotic convective counterion flux into the injecting hemisphere toward the zero-dimensional gate of the ejecting hemisphere to produce the superconcentration. As the concentrated counterion is ejected into the electroneutral bulk electrolyte, it attracts co-ions and produce a corresponding concentration of the co-ions. This mechanism is also shown to trap and concentrate co-ion microcolloids of micron sizes too (macroions) and hence has potential application in bead-based molecular assays.
    Biomicrofluidics 02/2008; 2(1):14102. DOI:10.1063/1.2904640 · 3.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrate efficient mixing in a micro-fluidic reservoir smaller than 10 microL using ac electro-osmosis driven by field-induced polarization. Our mixing device, of that electrodes are outside of the mixing unit, consists of three circular reservoirs (3mm in diameter) connected by a 1 mm x 1 mm channel. Unlike dc electro-osmosis, whose polarization is from charged substrate functional groups, this new mechanism uses the external field to capacitively charge the surface and the surface capacitance becomes the key factor in the electrokinetic mobility. The charging and mixing are enhanced at tailor-designed channel corners by exploiting the high normal fields at geometric singularities. The induced surface dielectric polarization and the resulting electric counter-ion double layer produce an effective Zeta potential in excess of 1 V, over one order of magnitude larger than the channel Zeta potential. The resulting ac electro-osmotic slip velocity scales quadratically with respect to the applied field, in contrast to the linear scaling of dc electro-osmosis and at 1cm/s and larger, exceeds the classical dc values by two orders of magnitude. The polarization is non-uniform at the corners due to field leakage to the dielectric substrate and the inhomogeneous slip velocity produces intense mixing vortices that effectively homogenize solutes in 30s in a 3mm reservoir, in contrast to hour-long mixing by pure diffusion.
    Biosensors & Bioelectronics 11/2006; 22(4):563-7. DOI:10.1016/j.bios.2006.05.032 · 6.41 Impact Factor