C D John

Imperial College London, London, ENG, United Kingdom

Are you C D John?

Claim your profile

Publications (21)86.91 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The hypothalamic-pituitary-adrenocortical (HPA) responses to bacterial infection are mediated, in part, by the actions of lipopolysaccharide (LPS) on pituitary folliculostellate (FS) cells that release pro-inflammatory cytokines [e.g. interleukin (IL)-6] and thereby facilitate adrenocorticotrophic hormone (ACTH) release from neighbouring corticotrophs. In the present study, two murine pituitary cell lines [TtT/GF (FS cells) and AtT20 D16:16 (corticotrophs)], alone and in co-culture, and an in vivo model of endotoxaemia were used to examine the potential role of nuclear factor-kappa B (NF-κB) in mediating LPS-induced ACTH secretion. Both cell lines expressed mRNAs for the key components of the LPS signalling system. LPS stimulated IL-6 release from TtT/GF cells via a glucocorticoid-sensitive, NF-κB-dependent mechanism; it also activated NF-κB in AtT20 cells, as did corticotrophin-releasing hormone (CRH). IL-6 potentiated (but LPS reduced) the stimulatory effects of CRH on ACTH release from AtT20 cells, whereas blockade of NF-κB (SC-514) increased the ACTH release induced by CRH in the presence or absence of LPS. In co-cultures, CRH and LPS acted synergistically to induce release of both IL-6 and ACTH. However, although SC-514 suppressed the release of IL-6 evoked by CRH and LPS, it potentiated the concomitant increase in ACTH release. In vivo both immunological (LPS) and psychological (restraint) stress increased intrapituitary NF-κB, whereas an NF-κB inhibitor (PHA781535E) attenuated the LPS-induced release of ACTH and abolished the HPA response to restraint stress. The results obtained in the present study support the premise that NF-κB plays an important role in mediating LPS signalling in the anterior pituitary gland, particularly in relation to IL-6 and ACTH secretion, and provide novel evidence that NF-κB blockade in vivo compromises stress-induced ACTH release.
    Journal of Neuroendocrinology 01/2012; 24(6):862-73. · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Annexin A1 (ANXA1, formerly termed lipocortin 1 or macrocortin) is an important protein mediator of the feedback actions of glucocorticoids within the hypothalamo-pituitary-adrenocortical (HPA) axis. Here we consider the mechanisms by which ANXA1 exerts these actions, with particular reference to the potential role of the formyl peptide receptors (FPRs), a family of G-protein-coupled receptors which has only very recently been implicated in the regulation of neuroendocrine function. In addition, we discuss evidence that ANXA1 contributes to the regulation of other aspects of endocrine and metabolic function and to the aetiology of sexual dimorphisms.
    Current Opinion in Pharmacology 11/2008; 8(6):765-76. · 5.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The N-formyl peptide receptors (FPRs) are a family of G-protein coupled receptors that respond to proinflammatory N-formylated bacterial peptides (e.g., formyl-Met-Leu-Phe, fMLF) and, thus, contribute to the host response to bacterial infection. Paradoxically, a growing body of evidence suggests that some members of this receptor family may also be targets for certain anti-inflammatory molecules, including annexin A1 (ANXA1), which is an important mediator of glucocorticoid (GC) action. To explore further the potential role of FPRs in mediating ANXA1 actions, we have focused on the pituitary gland, where ANXA1 has a well-defined role as a cell-cell mediator of the inhibitory effects of GCs on the secretion of corticotrophin (ACTH), and used molecular, genetic, and pharmacological approaches to address the question in well-established rodent models. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis identified mRNAs for four FPR family members in the mouse anterior pituitary gland, Fpr-rs1, Fpr-rs2, Fpr-rs6, and Fpr-rs7. Functional studies confirmed that, like dexamethasone, ANXA1 and two ANXA1-derived peptides (ANXA1(1-188) and ANXA1(Ac2-26)) inhibit the evoked release of ACTH from rodent anterior pituitary tissue in vitro. Fpr1 gene deletion failed to modify the pituitary responses to dexamethasone or ANXA1(Ac2-26). However, lipoxin A4 (LXA4, 0.02-2 microM, a lipid mediator with high affinity for Fpr-rs1) mimicked the inhibitory effects of ANXA1 on ACTH release as also did fMLF in high (1-100 microM) but not lower (10-100 nM) concentrations. Additionally, a nonselective FPR antagonist (Boc1, 100 microM) overcame the effects of dexamethasone, ANXA1(1-188), ANXA1(Ac2-26), fMLF, and LXA4 on ACTH release, although at a lower concentration (50 microM), it was without effect. Together, the results suggest that the actions of ANXA1 in the pituitary gland are independent of Fpr1 but may involve other FPR family members, in particular, Fpr-rs1 or a closely related receptor. They thus provide the first evidence for a role of the FPR family in the regulation of neuroendocrine function.
    The FASEB Journal 05/2007; 21(4):1037-46. · 5.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Perinatal glucocorticoid (GC) treatment is increasingly associated with long-term disturbances in hypothalamo-pituitary-adrenocortical function. In the male rat, such treatment induces profound molecular, morphological and functional changes in the anterior pituitary gland at adulthood. To determine whether these effects are sex-specific, we have examined the effects of perinatal dexamethasone treatment on the female pituitary gland, focusing on (i) the integrity of the annexin 1 (ANXA1) dependent regulatory effects of GCs on adrenocorticotrophic hormone (ACTH) release and (ii) corticotroph and folliculo-stellate (FS) cell morphology. Dexamethasone was given to pregnant (gestational days 16-19) or lactating (days 1-7 post partum) rats via the drinking water (1 microg/ml); controls received normal drinking water. Pituitary tissue from the female offspring was examined ex vivo at adulthood (60-90 days). Both treatment regimes reduced the intracellular and cell surface ANXA1 expression, as determined by western blot analysis and quantitative immunogold electron microscopic histochemistry. In addition, they compromised the ability of dexamethasone to suppress the evoked release of ACTH from the excised tissue in vitro, a process which requires the translocation of ANXA1 from the cytoplasm to the cell surface of FS cells. Although neither treatment regime affected the number of FS cells or corticotrophs, both altered the subcellular morphology of these cells. Thus, prenatal dexamethasone treatment increased while neonatal treatment decreased FS cell size and cytoplasmic area. By contrast, corticotroph size was unaffected by either treatment, as also was the size of the secretory granules. Corticotroph granule density and margination were, however, increased markedly by the prenatal treatment, while the neonatal treatment had no effect on granule density but decreased granule margination. Thus, perinatal dexamethasone treatment exerts long-term effects on the female pituitary gland, altering gene expression, cell morphology and the ANXA1-dependent GC regulation of ACTH secretion. The changes are similar but not identical to those reported in the male.
    Journal of Neuroendocrinology 01/2007; 18(12):949-59. · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, epididymal adipose tissue from male annexin 1 (ANXA1)-null and wild-type control mice were used to explore the potential role of ANXA1 in adipocyte biology. ANXA1 was detected by Western blot analysis in wild-type tissue and localized predominantly to the stromal-vascular compartment. Epididymal fat pad mass was reduced by ANXA1 gene deletion, but adipocyte size was unchanged, suggesting that ANXA1 is required for the maintenance of adipocyte and/or preadipocyte cell number. Epididymal tissue from wild-type mice responded in vitro to noradrenaline and isoprenaline with increased glycerol release, reduced IL-6 release, and increased cAMP accumulation. Qualitatively similar but significantly attenuated responses to the catecholamines were observed in tissue from ANXA1-null mice, an effect that was not associated with changes in beta-adrenoceptor mRNA expression. Lipopolysaccharide (LPS) also stimulated lipolysis in vitro, but its effects were muted by ANXA1 gene deletion. By contrast, LPS failed to influence IL-6 release from wild-type tissue but stimulated the release of the cytokine from tissue from ANXA1-null mice. ANXA1 gene deletion did not affect glucocorticoid receptor expression or the ability of dexamethasone to suppress catecholamine-induced lipolysis. It did, however, augment IL-6 expression and modify the inhibitory effects of glucocorticoids on IL-6 release. Collectively, these studies suggest that ANXA1 supports aspects of adipose tissue mass and alters the sensitivity of epididymal adipose tissue to catecholamines, glucocorticoids, and LPS, thereby modulating lipolysis and IL-6 release.
    AJP Endocrinology and Metabolism 01/2007; 291(6):E1264-73. · 4.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Annexin 1 (ANXA1) is a member of the annexin family of phospholipid- and calcium-binding proteins with a well demonstrated role in early delayed (30 min to 3 h) inhibitory feedback of glucocorticoids in the pituitary. We have examined corticotrophs in wild-type and ANXA1 knockout mice to determine the effects of lack of ANXA1 in male and female animals. Anterior pituitary tissue from ANXA1 wild-type, heterozygote and null mice was fixed and examined (i) by confocal immunocytochemistry to determine the number of corticotrophs and (ii) by electron microscopy to examine the size, secretory granule population and secretory machinery of corticotrophs. No differences in these parameters were detected in female mice. In male ANXA1 null mice, there were approximately four-fold more corticotrophs than in wild-type animals. However, the corticotrophs in ANXA1 null mice were smaller and had reduced numbers of secretory granules (the reduction in granules paralleled the reduction in cell size). No differences in the numerical density of folliculo-stellate, gonadotroph, lactotroph or somatotroph cells were detected in male ANXA1 null mice. Plasma corticosterone, adrenocorticotrophic hormone (ACTH) and pituitary pro-opiomelanocortin mRNA were unchanged but pituitary ACTH content was increased in male ANXA1 null mice. Interleukin (IL)-6 pituitary content was significantly elevated in male and reduced in female ANXA1 null mice compared to wild-type. In conclusion, these data indicate that ANXA1 deficiency is associated with gender-specific changes in corticotroph number and structure, via direct actions of ANXA1 and/or indirect changes in factors such as IL-6.
    Journal of Neuroendocrinology 12/2006; 18(11):835-46. · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Annexin 1 (ANXA1) was originally identified as a mediator of the anti-inflammatory actions of glucocorticoids (GCs) in the host defense system. Subsequent work confirmed and extended these findings and also showed that the protein fulfills a wider brief and serves as a signaling intermediate in a number of systems. ANXA1 thus contributes to the regulation of processes as diverse as cell migration, cell growth and differentiation, apoptosis, vesicle fusion, lipid metabolism, and cytokine expression. Here we consider the role of ANXA1 in the neuroendocrine system, particularly the hypothalamo-pituitary-adrenocortical (HPA) axis. Evidence is presented that ANXA1 plays a critical role in effecting the negative feedback effects of GCs on the release of corticotrophin (ACTH) and its hypothalamic-releasing hormones and that it is particularly pertinent to the early-onset actions of the steroids that are mediated via a nongenomic mechanism. The paracrine/juxtacrine mode of ANXA1 action is discussed in detail, with particular reference to the significance of the secondary processing of ANXA1, the processes that control the intracellular and transmembrane trafficking of the protein of the molecule and the mechanism of ANXA1 action on its target cells. In addition, the role of ANXA1 in the perinatal programming of the HPA axis is discussed.
    Annals of the New York Academy of Sciences 12/2006; 1088:396-409. · 4.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glucocorticoids are used to mature the fetal lung at times of threatened premature delivery. These drugs modify leukocyte profiles when administered in adulthood, but their effects on the mature host defence system following administration during the perinatal period are incompletely understood. In this study, the long-term effects of perinatal dexamethasone exposure on rodent host defence cells in the pulmonary airspaces, the perivascular compartment of the lung, and the blood were investigated. Rats were treated prenatally (gestational days 16-19) or neonatally (postnatal days 1-7) by inclusion of dexamethasone in the mothers' drinking water (1 microg/ml). The pups were then allowed to develop to adulthood (P60-80), at which time respiratory tissues were collected for light and electron microscopy and bronchoalveolar lavage (BAL), and blood for cell count and fluorescent activated cell-sorting (FACS) analysis. Prenatal treatment had no effect on any parameter examined. Following neonatal dexamethasone exposure, light microscopy of the lung tissue revealed a significant reduction in the number of cells in the perivascular space in both the central and the peripheral regions of the adult lung, but no differences in the number of cells in the airspaces. Neonatal dexamethasone exposure was also characterized by a significant reduction in the total number of white cells in the peripheral blood in adulthood and in particular, the number of lymphocytes relative to neutrophils was significantly reduced at maturity in these animals. The results show that neonatal, but not prenatal, dexamethasone exposure significantly alters the distribution of host defence cells in the blood and lung at maturity compared with control animals. The early neonatal period is characterized by the stress hyporesponsive period in the rat, when endogenous glucocorticoid levels are very low. Therefore, exogenous glucocorticoids administered during this time are likely to have marked "programming" effects on glucocorticoid-sensitive tissues.
    The Journal of Pathology 10/2006; 210(1):85-93. · 7.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to test the hypothesis that the tuberoinfundibular dopaminergic neurons of the arcuate nucleus and/or the lactotroph cells of the anterior pituitary gland are key targets for the programming effects of perinatal glucocorticoids (GCs). Dexamethasone was administered noninvasively to fetal or neonatal rats via the mothers' drinking water (1 mug/ml) on embryonic d 16-19 or neonatal d 1-7, and control animals received normal drinking water. At 68 d of age, the numbers of tyrosine hydroxylase-positive (TH+) cells in the arcuate nucleus and morphometric parameters of pituitary lactotrophs were analyzed. In control animals, striking sex differences in TH+ cell numbers, lactotroph cell size, and pituitary prolactin content were observed. Both pre- and neonatal GC treatment regimens were without effect in adult male rats, but in females, the overriding effect was to abolish the sex differences by reducing arcuate TH+ cell numbers (pre- and neonatal treatments) and reducing lactotroph cell size and pituitary prolactin content (prenatal treatment only) without changing lactotroph cell numbers. Changes in circulating prolactin levels represented a net effect of hypothalamic and pituitary alterations that exhibited independent critical windows of susceptibility to perinatal GC treatments. The dopaminergic neurons of the hypothalamic periventricular nucleus and the pituitary somatotroph populations were not significantly affected by either treatment regimen in either sex. These data show that the adult female hypothalamo-lactotroph axis is profoundly affected by perinatal exposure to GCs, which disrupts the tonic inhibitory tuberoinfundibular dopaminergic pathway and changes lactotroph morphology and prolactin levels in the pituitary and circulation. These findings provide new evidence for a long-term disruption in prolactin-dependent homeostasis in females, but not males, after inappropriate GC exposure in perinatal life.
    Endocrinology 05/2006; 147(4):1904-15. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mode of action of annexin A1 (ANXA1) is poorly understood. By using rapid subtraction hybridization we studied the effects of human recombinant ANXA1 and the N-terminal ANXA1 peptide on gene expression in a human larynx cell line. Three genes showed strong downregulation after treatment with ANXA1. In contrast, expression of CCR10, a seven transmembrane G-protein coupled receptor for chemokine CCL27 involved in mucosal immunity, was increased. Moreover the reduction in CCR10 expression induced by ANXA1 gene deletion was rescued by intravenous treatment with low doses of ANXA1. These findings provide new evidence that ANXA1 modulates gene expression.
    FEBS Letters 03/2006; 580(5):1431-8. · 3.58 Impact Factor
  • Frontiers in Neuroendocrinology - FRONT NEUROENDOCRINOL. 01/2006; 27(1):53-54.
  • Source
    Febs Letters - FEBS LETT. 01/2006; 580(7):1908-1908.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stress or glucocorticoid (GC) treatment in perinatal life can induce long-term changes in the sensitivity of the hypothalamo-pituitary-adrenocortical axis to the feedback actions of GCs and, hence, in GC secretion. These changes have been ascribed largely to changes in the sensitivity of the limbic system, and possibly the hypothalamus, to GCs. Surprisingly, the possibility that early life stress/GC treatment may also exert irreversible effects at the pituitary level has scarcely been addressed. Accordingly, we have examined the effects of pre- and neonatal dexamethasone treatment on the adult male pituitary gland, focusing on the following: 1) the integrity of the acute annexin 1 (ANXA1)-dependent inhibitory actions of GCs on ACTH secretion, a process requiring ANXA1 release from folliculostellate (FS) cells; and 2) the morphology of FS cells and corticotrophs. Dexamethasone was given to pregnant (d 16-19) or lactating (d 1-7 postpartum) rats via the drinking water (1 microg/ml); controls received normal drinking water. Pituitary tissue from the offspring was examined ex vivo at d 90. Both treatment regimens reduced ANXA1 expression, as assessed by Western blotting and quantitative immunogold labeling. In particular, the amount of ANXA1 located on the outer surface of the FS cells was reduced. By contrast, IL-6 expression was increased, particularly by the prenatal treatment. Pituitary tissue from untreated control rats responded to dexamethasone with an increase in cell surface ANXA1 and a reduction in forskolin-induced ACTH release. In contrast, pituitary tissue from rats treated prenatally or neonatally with dexamethasone was unresponsive to the steroid, although, like control tissue, it responded readily to ANXA1, which readily inhibited forskolin-driven ACTH release. Prenatal dexamethasone treatment reduced the size but not the number of FS cells. It also caused a marked reduction in corticotroph number and impaired granule margination without affecting other aspects of corticotroph morphology. Similar but less marked effects on pituitary cell morphology and number were evident in tissue from neonatally treated rats. Our study shows that, when administered by a noninvasive process, perinatal GC treatment exerts profound effects on the adult pituitary gland, impairing the ANXA1-dependent GC regulation of ACTH release and altering the cell profile and morphology.
    Endocrinology 12/2005; 146(11):4804-13. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Annexin 1 (ANXA1) was first identified as a mediator of the anti-inflammatory actions of glucocorticoids in the host defence system. Subsequent work revealed that this protein fulfils a wider brief and it is now recognized as an important signalling intermediate in a variety of other systems. Here, we consider the role of ANXA1 in the endocrine system, placing particular emphasis on new insights into the mechanisms and functional significance of the secondary processing of ANXA1, the processes that control the intracellular and transmembrane trafficking of the molecule and the molecular mechanisms of ANXA1 action that have identified a novel role for the protein as a paracrine/juxtacrine mediator of the non-genomic actions of glucocorticoids in the neuroendocrine system.
    Trends in Endocrinology and Metabolism 05/2004; 15(3):103-9. · 8.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our previous studies have identified a role for annexin 1 (ANXA1), a protein produced by the pituitary folliculostellate cells, as a paracrine/juxtacrine mediator of the acute regulatory effects of glucocorticoids on the release of adrenocorticotropic hormone and other pituitary hormones. In the present study, we focused on the secretion of thyroid stimulating hormone (TSH) and luteinizing hormone (LH) and used a battery of ANXA1-derived peptides to identify the key domains in the ANXA1 molecule that are critical to the inhibition of peptide release. In addition, as ANXA1 is a substrate for protein kinase C (PKC) and tyrosine kinase, we examined the roles of these kinases in the manifestation of the ANXA1-dependent inhibitory actions of dexamethasone on TSH and LH release. Dexamethasone suppressed the forskolin-induced release of TSH and LH from rat anterior pituitary tissue in vitro. Its effects were mimicked by human recombinant ANXA1 (hrANXA1) and a truncated protein, ANXA1(1-188). ANXA1(Ac2-26), also suppressed stimulated peptide release but it lacked both the potency and the efficacy of the parent protein. Shorter N-terminal ANXA1 sequences were without effect. The PKC inhibitor PKC(19-36) abolished the inhibitory actions of dexamethasone on the forskolin-evoked release of TSH and LH; it also attenuated the inhibitory actions of ANXA1(Ac2-26). Similar effects were produced by annexin 5 (ANXA5) which sequesters PKC in other systems. By contrast, the tyrosine kinase inhibitors, p60v-src (137-157) and genistein, had no effect on the secretion of TSH or LH alone or in the presence of forskolin and/or dexamethasone. Dexamethasone caused the translocation of a tyrosine-phosphorylated species of ANXA1 to the surface of pituitary cells. The total amount of ANXA1 exported from the cells in response to the steroid was unaffected by tyrosine kinase blockade. However, the degree of tyrosine-phosphorylation of the exported protein was markedly reduced by genistein. These results suggest that (i) the ANXA1-dependent inhibitory actions of dexamethasone on the release of TSH and LH require PKC and sequences in the N-terminal domain of ANXA1, but are independent of tyrosine kinase, and (ii) while dexamethasone induces the cellular exportation of a tyrosine-phosphorylated species of ANXA1, tyrosine phosphorylation per se is not critical to the steroid-induced passage of ANXA1 across the membrane.
    Journal of Neuroendocrinology 11/2003; 15(10):946-57. · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucocorticoids (GCs) play an essential role in the maintenance of homeostasis. In normal circumstances their secretion is tightly regulated by a complex servo mechanism through which the steroids suppress the synthesis and release of ACTH and its hypothalamic releasing factors (CRH and AVP) and thereby reduce the positive drive to the adrenal cortex. The feedback actions of GCs on hormone release develop rapidly (within minutes), well before any changes in hormone synthesis are apparent. By using immunoneutralization, gene targeting and pharmacological strategies in in vivo and in vitro models, we have identified annexin 1, a Ca(2+)- and phospholipid-binding protein, as a key mediator of the early inhibitory actions of GCs on peptide release. This brief review outlines this work and describes molecular and cellular studies which have provided insight into the mechanism of annexin 1-dependent GC signalling in the neuroendocrine system.
    Cell Biochemistry and Function 10/2003; 21(3):217-21. · 1.85 Impact Factor
  • Christopher D John, Julia C Buckingham
    [Show abstract] [Hide abstract]
    ABSTRACT: Many of the pro-inflammatory cytokines that are released in response to immune/inflammatory insults exert marked stimulatory influences on the hypothalamo-pituitary-adrenocortical axis. Thus, they provoke the release of glucocorticoids that, in turn, temper the ensuing immune/inflammatory response, and thereby complete a homeostatic neuroendocrine loop. The mechanisms by which cytokines cause glucocorticoid release are complex and can be affected by repeated or sustained cytokine exposure, gender and age, or counter-regulatory mechanisms.
    Current Opinion in Pharmacology 03/2003; 3(1):78-84. · 5.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Annexin 1 (ANXA1) is an important mediator of glucocorticoid action in the neuroendocrine system. As the activity of this protein in other systems is modulated by phosphorylation of its N-terminal domain, we have explored the significance of this domain and its phosphorylation status to ANXA1 actions within the pituitary gland, using an established in vitro preparation. Two N-terminal peptides, ANXA1(Ac2-26) and ANXA1(Ac1-50), inhibited forskolin-evoked ACTH and prolactin release; however, they lacked the potency and full efficacy of the parent molecule (ANXA1(1-346)), whereas other shorter N-terminal sequences were without effect. A chimeric protein comprising ANXA1(1-44) and the C-terminal core of ANXA5 (ANXA5(20-320)) also produced a partial inhibition of peptide release. Protein kinase C (PKC) blockade (PKC(19-36)) abolished the inhibitory effects of dexamethasone on forskolin-evoked peptide release and attenuated the antisecretory actions of ANXA1(Ac2-26.) ANXA5, which sequesters PKC in other systems, produced similar effects. PKC(19-36) also blocked the dexamethasone- induced translocation of a serine phosphorylated species of ANXA1 from the cytoplasm to the outer cell surface. These results suggest that 1) the N-terminal domain plays a fundamental role in effecting the inhibitory actions of ANXA1 on pituitary peptide release; 2) PKC-dependent mechanisms are essential for both the cellular exportation and the biological activity of ANXA1; and 3) ANXA1 exported from the cells is serine phosphorylated.
    Endocrinology 09/2002; 143(8):3060-70. · 4.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Annexin 1 is an important mediator of glucocorticoid action in the hypothalamo-pituitary axis; however, little is known of its role in mediating glucocorticoid actions in the peripheral endocrine organs. Accordingly, we have carried out a preliminary study to investigate the effects of annexin 1 in vitro on the testicular secretion of testosterone, a process inhibited by both glucocorticoids and interleukin-1beta (IL-1beta). Luteinizing hormone (LH) and forskolin stimulated the release of testosterone from dispersed murine testicular cells in vitro. Their effects were reduced in cells from mice pretreated with dexamethasone (DEX). Similarly, preincubation of testicular cells from untreated mice with DEX, corticosterone, or 11-dehydrocorticosterone reduced LH-stimulated testosterone release, as did the 11beta-hydroxysteroid dehydrogenase inhibitors, glycyrrhetinic acid and carbenoxolone. The inhibitory actions of the steroids were mimicked by annexin 1(1-188) (ANXA1(1-188)) (a stable annexin 1 analog). IL-1beta produced a marked decrease in the response to LH, which was blocked by indomethacin, a nonselective cyclooxygenase inhibitor and an additive effect with DEX and ANXA1(1-188). These results confirm reports that glucocorticoids and IL-1beta inhibit LH-stimulated testosterone release from mouse testicular cells. They also show, for the first time, that the effects of the steroids are mimicked by annexin 1 and that, in contrast to their mutually antagonistic effects in the neuroendocrine system, IL-1beta and annexin 1 exert additive actions in the testis.
    Endocrine 07/2002; 18(1):33-9. · 2.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. This study exploited established immunoneutralization protocols and an N-terminal annexin 1 peptide (annexin 1(Ac2 - 26)) to advance our knowledge of the role of annexin 1 as a mediator of acute glucocorticoid action in the rat neuroendocrine system in vivo. 2. Rats were treated with corticosterone (500 microg kg(-1), i.p.) or annexin 1(Ac2 - 26) (0.1 - 10 ng rat(-1), i.c.v.) and 75 min later with interleukin 1beta (IL-1beta, 10 ng rat(-1), i.c.v. or 500 microg kg(-1), i.p). Blood was collected 1 h later for hormone immunoassay. Where appropriate, anti-annexin 1 polyclonal antiserum (pAb) was administered subcutaneously or centrally prior to the steroid challenge. 3. Corticosterone did not affect the resting plasma corticotrophin (ACTH) concentration but suppressed the hypersecretion of ACTH induced by IL-1beta (i.p. or i.c.v.). Its actions were quenched by anti-annexin 1 pAb (s.c. or i.c.v) and mimicked by annexin 1(Ac2 - 26). 4. By contrast, corticosterone provoked an increase in serum growth hormone (GH) which was ablated by central but not peripheral administration of anti-annexin 1 pAb. IL-1beta (i.c.v. or i.p.) did not affect basal GH but, when given centrally but not peripherally, it abolished the corticosterone-induced hypersecretion of GH. Annexin 1(Ac2 - 26) (i.c.v.) also produced an increase in serum GH which was prevented by central injection of IL-1beta. 5. The results support the hypothesis that the acute regulatory actions of glucocorticoids on hypothalamo-pituitary-adrenocortical function require annexin 1. They also provide novel evidence that the positive influence of the steroids on GH secretion evident within this timeframe is effected centrally via an annexin 1-dependent mechanism which is antagonized by IL-1beta.
    British Journal of Pharmacology 11/2001; 134(4):887-95. · 5.07 Impact Factor