Are you Christine Hendrickson?

Claim your profile

Publications (9)39.66 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Striatal degeneration from glutaryl-CoA dehydrogenase deficiency (glutaric aciduria type 1, GA1) is associated with cerebral formation and entrapment of glutaryl-CoA and its derivatives that depend on cerebral lysine influx. In 2006 we designed a lysine-free study formula enriched with arginine to selectively block lysine transport across cerebral endothelia and thereby limit glutaryl-CoA production by brain. Between 2006 and present, we treated twelve consecutive children with study formula (LYSx group) while holding all other treatment practices constant. Clinical and biochemical outcomes were compared to 25 GA1 patients (PROx group) treated between 1995 and 2005 with natural protein restriction (dietary lysine/arginine ratio of 1.7±0.3 mg:mg). We used published kinetic parameters of the y+and LAT1 blood-brain barrier transporters to model the influx of amino acids into the brain. Arginine fortification to achieve a mean dietary lysine/arginine ratio of 0.7±0.2 mg:mg was neuroprotective. All 12 LYSx patients are physically and neurologically healthy after 28 aggregate patient-years of follow up (current ages 28±21 months) and there were no adverse events related to formula use. This represents a 36% reduction of neurological risk (95% confidence interval 14-52%, p=0.018) that we can directly attribute to altered amino acid intake. During the first year of life, 20% lower lysine intake and two-fold higher arginine intake by LYSx patients were associated with 50% lower plasma lysine, 3-fold lower plasma lysine/arginine concentration ratio, 42% lower mean calculated cerebral lysine influx, 54% higher calculated cerebral arginine influx, 15-26% higher calculated cerebral influx of several anaplerotic precursors (isoleucine, threonine, methionine, and leucine), 50% less 3-hydroxyglutarate excretion, and a 3-fold lower hospitalization rate (0.8 versus 2.3 hospitalizations per patient per year). The relationship between arginine fortification and plasma lysine indicates that transport competition exists at both cerebrovascular and gastrointestinal barriers, suggesting their co-administration is key to efficacy. Monitoring the ratio between lysine and arginine in diet and plasma may prove a useful strategy for treating children with GA1.
    Molecular Genetics and Metabolism 07/2011; 104(1-2):93-106. · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pyruvate kinase deficiency is a chronic illness with age specific consequences. Newborns suffer life-threatening hemolytic crisis and hyperbilirubinemia. Adults are at risk for infections because of asplenia, pregnancy-related morbidity, and may suffer organ damage because of systemic iron overload. We describe 27 Old Order Amish patients (ages 8 months-52 years) homozygous for c.1436G>A mutations in PKLR. Each subject had a predictable neonatal course requiring packed red blood cell transfusions (30 ± 5 mL/kg) to control hemolytic disease and intensive phototherapy to prevent kernicterus. Hemochromatosis affected 29% (n = 4) of adult patients, who had inappropriately normal serum hepcidin (34.5 ± 12.7 ng/mL) and GDF-15 (595 ± 335pg/mL) relative to hyperferritinemia (769 ± 595 mg/dL). A high prevalence of HFE gene mutations exists in this population and may contribute to iron-related morbidity. Based on our observations, we present a strategy for long-term management of pyruvate kinase deficiency.
    American Journal of Hematology 06/2011; 86(10):827-34. · 4.00 Impact Factor
  • Source
    Molecular Genetics and Metabolism 06/2011; 103(2):202. · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Branched-chain ketoacid dehydrogenase deficiency results in complex and volatile metabolic derangements that threaten brain development. Treatment for classical maple syrup urine disease (MSUD) should address this underlying physiology while also protecting children from nutrient deficiencies. Based on a 20-year experience managing 79 patients, we designed a study formula to (1) optimize transport of seven amino acids (Tyr, Trp, His, Met, Thr, Gln, Phe) that compete with branched-chain amino acids (BCAAs) for entry into the brain via a common transporter (LAT1), (2) compensate for episodic depletions of glutamine, glutamate, and alanine caused by reverse transamination, and (3) correct deficiencies of omega-3 essential fatty acids, zinc, and selenium widespread among MSUD patients. The formula was enriched with LAT1 amino acid substrates, glutamine, alanine, zinc, selenium, and alpha-linolenic acid (18:3n-3). Fifteen Old Order Mennonite children were started on study formula between birth and 34 months of age and seen at least monthly in the office. Amino acid levels were checked once weekly and more often during illnesses. All children grew and developed normally over a period of 14-33 months. Energy demand, leucine tolerance, and protein accretion were tightly linked during periods of normal growth. Rapid shifts to net protein degradation occurred during illnesses. At baseline, most LAT1 substrates varied inversely with plasma leucine, and their calculated rates of brain uptake were 20-68% below normal. Treatment with study formula increased plasma concentrations of LAT1 substrates and normalized their calculated uptakes into the nervous system. Red cell membrane omega-3 polyunsaturated fatty acids and serum zinc and selenium levels increased on study formula. However, selenium and docosahexaenoic acid (22:6n-3) levels remained below normal. During the study period, hospitalizations decreased from 0.35 to 0.14 per patient per year. There were 28 hospitalizations managed with MSUD hyperalimentation solution; 86% were precipitated by common infections, especially vomiting and gastroenteritis. The large majority of catabolic illnesses were managed successfully at home using 'sick-day' formula and frequent amino acid monitoring. We conclude that the study formula is safe and effective for the treatment of classical MSUD. In principle, dietary enrichment protects the brain against deficiency of amino acids used for protein accretion, neurotransmitter synthesis, and methyl group transfer. Although the pathophysiology of MSUD can be addressed through rational formula design, this does not replace the need for vigilant clinical monitoring, frequent measurement of the complete amino acid profile, and ongoing dietary adjustments that match nutritional intake to the metabolic demands of growth and illness.
    Molecular Genetics and Metabolism 04/2010; 99(4):333-45. · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cartilage-hair hypoplasia is a short limbed skeletal dysplasia associated with impairments in host-defense. To better understand the clinical heterogeneity of this disorder, we studied 25 Amish patients with homozygous mutations in RMRP (RMRP 70 A > G). Despite mutation homogeneity, eight (32%) patients had severe or recurrent infections, two (8%) of these children underwent bone-marrow transplantation for combined immunodeficiency, and the remainder were healthy. Features distinguishing patients who underwent bone marrow transplantation from others were shorter birth length, and lower serum IgG, undetectable serum IgA, and elevated circulating NK cells before 2 years of age. Irrespective of clinical phenotype, most patients had lymphopenia and reduced lymphocyte proliferation to mitogens in vitro. Our cohort analysis suggests that many patients with cartilage-hair hypoplasia are at risk for infection susceptibility particularly during the first 2 years of life. Gauging this risk is difficult, and thus careful monitoring of all patients with cartilage-hair hypoplasia is warranted.
    Clinical Immunology 01/2009; · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We used single nucleotide polymorphism (SNP) microarrays to investigate the cause of a symptomatic epilepsy syndrome in a group of seven distantly related Old Order Mennonite children. Autozygosity mapping was inconclusive, but closer inspection of the data followed by formal SNP copy number analyses showed that all affected patients had homozygous deletions of a single SNP (rs721575) and their parents were hemizygous for this marker. The deleted SNP marked a larger deletion encompassing exons 9-13 of LYK5, which encodes STE20-related adaptor protein, a pseudokinase necessary for proper localization and function of serine/threonine kinase 11 (a.k.a. LKB1). Homozygous LYK5 deletions were associated with polyhydramnios, preterm labour and distinctive craniofacial features. Affected children had large heads, infantile-onset intractable multifocal seizures and severe psychomotor retardation. We designated this condition PMSE syndrome (polyhydramnios, megalencephaly and symptomatic epilepsy). Thirty-eight percent (N = 16) of affected children died during childhood (ages 7 months to 6 years) from medical complications of the disorder, which included status epilepticus, congestive heart failure due to atrial septal defect and hypernatremic dehydration due to diabetes insipidus. A single post-mortem neuropathological study revealed megalencephaly, ventriculomegaly, cytomegaly and extensive vacuolization and astrocytosis of white matter. There was abundant anti-phospho-ribosomal S6 labelling of large cells within the frontal cortex, basal ganglia, hippocampus and spinal cord, consistent with constitutive activation of the mammalian target of rapamycin (mTOR) signalling pathway in brain.
    Brain 08/2007; 130(Pt 7):1929-41. · 9.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over a four-year period, we collected clinical and biochemical data from five Amish children who were homozygous for missense mutations in 5,10-methylenetetrahydrofolate reductase (MTHFR c.1129C>T). The four oldest patients had irreversible brain damage prior to diagnosis. The youngest child, diagnosed and started on betaine therapy as a newborn, is healthy at her present age of three years. We compared biochemical data among four groups: 16 control subjects, eight heterozygous parents, and five affected children (for the latter group, both before and during treatment with betaine anhydrous). Plasma amino acid concentrations were used to estimate changes in cerebral methionine uptake resulting from betaine therapy. In all affected children, treatment with betaine (534+/-222 mg/kg/day) increased plasma S-adenosylmethionine, improved markers of tissue methyltransferase activity, and resulted in a threefold increase of calculated brain methionine uptake. Betaine therapy did not normalize plasma total homocysteine, nor did it correct cerebral 5-methyltetrahydrofolate deficiency. We conclude that when the 5-methyltetrahydrofolate content of brain tissue is low, dietary betaine sufficient to increase brain methionine uptake may compensate for impaired cerebral methionine recycling. To effectively support the metabolic requirements of rapid brain growth, a large dose of betaine should be started early in life.
    Molecular Genetics and Metabolism 06/2007; 91(2):165-75. · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An 8.5-year-old girl with classical maple syrup urine disease (MSUD) required liver transplantation for hypervitaminosis A and was effectively cured of MSUD over an 8-year clinical follow-up period. We developed a collaborative multidisciplinary effort to evaluate the effects of elective liver transplantation in 10 additional children (age range 1.9-20.5 years) with classical MSUD. Patients were transplanted with whole cadaveric livers under a protocol designed to optimize safe pre- and post-transplant management of MSUD. All patients are alive and well with normal allograft function after 106 months of follow-up in the index patient and a median follow-up period of 14 months (range 4-18 months) in the 10 remaining patients. Leucine, isoleucine and valine levels stabilized within 6 hours post-transplant and remained so on an unrestricted protein intake in all patients. Metabolic cure was documented as a sustained increase in weight-adjusted leucine tolerance, normalization of plasma concentration relationships among branched-chain and other essential and nonessential amino acids, and metabolic and clinical stability during protein loading and intercurrent illnesses. Costs and risks associated with surgery and immune suppression were similar to other pediatric liver transplant populations.
    American Journal of Transplantation 04/2006; 6(3):557-64. · 6.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Clinic for Special Children in Lancaster County, Pennsylvania, is a community-supported, nonprofit pediatric medical practice for Amish and Mennonite children who have genetic disorders. Over a 14-year period, 1988-2002, we have encountered 39 heritable disorders among the Amish and 23 among the Mennonites. We emphasize early recognition and long-term medical care of children with genetic conditions. In the clinic laboratory we perform amino acid analyses by high-performance liquid chromatography (HPLC), organic acid analyses by gas chromatography/mass spectrometry (GC/MS), and molecular diagnoses and carrier tests by polymerase chain reaction (PCR) amplification and sequencing or restriction digestion. Regional hospitals and midwives routinely send whole-blood filter paper neonatal screens for tandem mass spectrometry and other modern analytical methods to detect 14 of the metabolic disorders found in these populations as part of the NeoGen Inc. Supplemental Newborn Screening Program (Pittsburgh, PA). Medical care based on disease pathophysiology reduces morbidity, mortality, and costs for the majority of disorders. Among our patients who are homozygous for the same mutation, differences in disease severity are not unusual. Clinical problems typically arise from the interaction of the underlying genetic disorder with common infections, malnutrition, injuries, and immune dysfunction that act through classical pathophysiological disease mechanisms to influence the natural history of disease.
    American Journal of Medical Genetics Part C Seminars in Medical Genetics 09/2003; 121C(1):5-17. · 4.44 Impact Factor