Christine Göbel

University of Freiburg, Freiburg, Baden-Württemberg, Germany

Are you Christine Göbel?

Claim your profile

Publications (3)23.72 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the establishment of a bacterial infection, the surface molecules of the host organism are of particular importance, since they mediate the first contact with the pathogen. In Caenorhabditis elegans, mutations in the srf-3 locus confer resistance to infection by Microbacterium nematophilum, and they also prevent biofilm formation by Yersinia pseudotuberculosis, a close relative of the bubonic plague agent Yersinia pestis. We cloned srf-3 and found that it encodes a multitransmembrane hydrophobic protein resembling nucleotide sugar transporters of the Golgi apparatus membrane. srf-3 is exclusively expressed in secretory cells, consistent with its proposed function in cuticle/surface modification. We demonstrate that SRF-3 can function as a nucleotide sugar transporter in heterologous in vitro and in vivo systems. UDP-galactose and UDP-N-acetylglucosamine are substrates for SRF-3. We propose that the inability of Yersinia biofilms and M. nematophilum to adhere to the nematode cuticle is due to an altered glycoconjugate surface composition of the srf-3 mutant.
    Journal of Biological Chemistry 08/2004; 279(29):30440-8. · 4.65 Impact Factor
  • Source
    Maren Hertweck, Christine Göbel, Ralf Baumeister
    [Show abstract] [Hide abstract]
    ABSTRACT: The DAF-2 insulin receptor-like signaling pathway controls metabolism, development, longevity, and stress response in C. elegans. Here we show that SGK-1, the C. elegans homolog of the serum- and glucocorticoid-inducible kinase SGK, acts in parallel to the AKT kinases to mediate DAF-2 signaling. Loss of sgk-1 results in defective egg-laying, extended generation time, increased stress resistance, and an extension of life span. SGK-1 forms a protein complex with the AKT kinases, and is activated by and strictly depends on PDK-1. All three kinases of this complex are able to directly phosphorylate DAF-16/FKHRL1, yet have different functions in DAF-2 signaling. Whereas AKT-1 and AKT-2 are more important for regulating dauer formation, SGK-1 is the crucial factor for the control of development, stress response, and longevity. Our data also suggest the existence of a second pathway from DAF-2 to DAF-16 that does not depend on AKT-1, AKT-2, and SGK-1.
    Developmental Cell 05/2004; 6(4):577-88. · 12.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in presenilin genes are associated with familial Alzheimer's disease in humans and affect LIN-12/Notch signaling in all organisms tested so far. Loss of sel-12 presenilin activity in Caenorhabditis elegans results in a completely penetrant egg-laying defect. In screens for extragenic suppressors of the sel-12 egg-laying defect, we have isolated mutations in at least five genes. We report the cloning and characterization of spr-3 and spr-4, which encode large basic C(2)H(2) zinc-finger proteins. Suppression of sel-12 by spr-3 and spr-4 requires the activity of the second presenilin gene, hop-1. Mutations in both spr-3 and spr-4 de-repress hop-1 transcription in the early larval stages when hop-1 expression is normally nearly undetectable. As sel-12 and hop-1 are functionally redundant, this suggests that mutations in spr-3 and spr-4 bypass the need for one presenilin by stage-specifically de-repressing the transcription of the other. Both spr-3 and spr-4 code for proteins similar to the human REST/NRSF (Re1 silencing transcription factor/neural-restrictive silencing factor) transcriptional repressors. As other Spr genes encode proteins homologous to components of the CoREST co-repressor complex that interacts with REST, and the INHAT (inhibitor of acetyltransferase) co-repressor complex, our data suggest that all Spr genes may function through the same mechanism that involves transcriptional repression of the hop-1 locus.
    Development 06/2003; 130(10):2117-28. · 6.21 Impact Factor