C.J. Saunders

Queen's University Belfast, Béal Feirste, N Ireland, United Kingdom

Are you C.J. Saunders?

Claim your profile

Publications (2)2.16 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: A comparative study of models used to predict contaminant dispersion in a partially stratified room is presented. The experiments were carried out in a ventilated test room, with an initially evenly dispersed pollutant. Air was extracted from the outlet in the ceiling of the room at 1 and 3 air changes per hour. A small temperature difference between the top and bottom of the room causes very low air velocities, and higher concentrations, in the lower half of the room. Grid-independent CFD calculations were compared with predictions from a zonal model and from CFD using a very coarse grid. All the calculations show broadly similar contaminant concentration decay rates for the three locations monitored in the experiments, with the zonal model performing surprisingly well. For the lower air change rate, the models predict a less well mixed contaminant distribution than the experimental measurements suggest. With run times of less than a few minutes, the zonal model is around two orders of magnitude faster than coarse-grid CFD and could therefore be used more easily in parametric studies and sensitivity analyses. For a more detailed picture of internal dispersion, a CFD study using coarse and standard grids may be more appropriate.
    Environmental Modelling & Software. 01/2008;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pesticide smoke generating products are widely used by amateurs and professionals but there is little published information available about their burn and deposition characteristics to enable the risks associated with using these devices to be assessed. This paper investigates their burn characteristics, deposition patterns, pesticide air concentrations and potential exposure to operators. Thirteen firings were carried out in different spaces with different ventilation conditions. Three types of devices were investigated: dicloran, permethrin and red dye. Pesticide air concentrations increased after firing, reaching a maximum determined by the room volume in approximately 10 min and decreasing exponentially as a result of ventilation and deposition. Ejected pesticide was present in the aerosol phase but there were only occasional traces of vapour. Settlement of pesticide was affected by surface orientation, height, sampling material and the pesticide-to-space volume ratio. The manufacturer's recommended treatment period for dicloran of 4 h followed by half an hour of ventilation may be insufficient to reduce pesticide to safe levels for re-entry under very calm conditions.
    Annals of Occupational Hygiene 11/2006; 50(7):717-29. · 2.16 Impact Factor