Brian Weis

University of Texas Southwestern Medical Center, Dallas, TX, United States

Are you Brian Weis?

Claim your profile

Publications (3)16.89 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carbohydrate restriction is a common weight-loss approach that modifies hepatic metabolism by increasing gluconeogenesis (GNG) and ketosis. Because little is known about the effect of carbohydrate restriction on the origin of gluconeogenic precursors (GNG from glycerol [GNG(glycerol)] and GNG from lactate/amino acids [GNG(phosphoenolpyruvate (PEP))]) or its consequence to hepatic energy homeostasis, we studied these parameters in a group of overweight/obese subjects undergoing weight-loss via dietary restriction. We used (2)H and (13)C tracers and nuclear magnetic resonance spectroscopy to measure the sources of hepatic glucose and tricarboxylic acid (TCA) cycle flux in weight-stable subjects (n = 7) and subjects following carbohydrate restriction (n = 7) or calorie restriction (n = 7). The majority of hepatic glucose production in carbohydrate restricted subjects came from GNG(PEP). The contribution of glycerol to GNG was similar in all groups despite evidence of increased fat oxidation in carbohydrate restricted subjects. A strong correlation between TCA cycle flux and GNG(PEP) was found, though the reliance on TCA cycle energy production for GNG was attenuated in subjects undergoing carbohydrate restriction. Together, these data imply that the TCA cycle is the energetic patron of GNG. However, the relationship between these two pathways is modified by carbohydrate restriction, suggesting an increased reliance of the hepatocyte on energy generated outside of the TCA cycle when GNG(PEP) is maximal. CONCLUSION: Carbohydrate restriction modifies hepatic GNG by increasing reliance on substrates like lactate or amino acids but not glycerol. This modification is associated with a reorganization of hepatic energy metabolism suggestive of enhanced hepatic beta-oxidation.
    Hepatology 11/2008; 48(5):1487-96. · 11.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients with HIV taking protease inhibitors were selected for the presence (five subjects) or absence (five subjects) of lipoatrophy. Following an overnight fast, subjects were given oral (2)H(2)O in divided doses (5 mL/kg body water), [U-(13)C(3)] propionate (10 mg/kg), and acetaminophen (1000 mg). Glucose (from plasma) or acetaminophen glucuronide (from urine) were converted to monoacetone glucose for (2)H NMR and (13)C NMR analysis. The fraction of plasma glucose derived from gluconeogenesis was not significantly different between groups. However, flux from glycerol into gluconeogenesis relative to glucose production was increased from 0.20 +/- 0.13 among subjects without lipoatrophy to 0.42 +/- 0.12 (P < 0.05) among subjects with lipoatrophy, and the TCA cycle contribution was reduced. Lipoatrophy was associated with an abnormal profile of glucose production as assessed by (13)C and (2)H NMR of plasma and urine.
    Magnetic Resonance in Medicine 04/2004; 51(4):649-54. · 3.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian liver disposes of acetaminophen and other ingested xenobiotics by forming soluble glucuronides that are subsequently removed via renal filtration. When given in combination with the stable isotopes 2H and 13C, the glucuronide of acetaminophen isolated from urine provides a convenient "chemical biopsy" for evaluating intermediary metabolism in the liver. Here, we describe isolation and purification of urinary acetaminophen glucuronide and its conversion to monoacetone glucose (MAG). Subsequent 2H and 13C NMR analysis of MAG from normal volunteers after ingestion of 2H2O and [U-13C3]propionate allowed a noninvasive profiling of hepatic gluconeogenic pathways. The method should find use in metabolic studies of infants and other populations where blood sampling is either limited or problematic.
    Analytical Biochemistry 02/2003; 312(2):228-34. · 2.31 Impact Factor