Borbála Szenthe

Eötvös Loránd University, Budapest, Budapest fovaros, Hungary

Are you Borbála Szenthe?

Claim your profile

Publications (8)27.35 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The mechanism of serine proteases prominently illustrates how charged amino acid residues and proton transfer events facilitate enzyme catalysis. Here we present an ultrahigh resolution (0.93 Å) x-ray structure of a complex formed between trypsin and a canonical inhibitor acting through a substrate-like mechanism. The electron density indicates the protonation state of all catalytic residues where the catalytic histidine is, as expected, in its neutral state prior to the acylation step by the catalytic serine. The carboxyl group of the catalytic aspartate displays an asymmetric electron density so that the Oδ2–Cγ bond appears to be a double bond, with Oδ2 involved in a hydrogen bond to His-57 and Ser-214. Only when Asp-102 is protonated on Oδ1 atom could a density functional theory simulation reproduce the observed electron density. The presence of a putative hydrogen atom is also confirmed by a residual mFobs − DFcalc density above 2.5 σ next to Oδ1. As a possible functional role for the neutral aspartate in the active site, we propose that in the substrate-bound form, the neutral aspartate residue helps to keep the pKa of the histidine sufficiently low, in the active neutral form. When the histidine receives a proton during the catalytic cycle, the aspartate becomes simultaneously negatively charged, providing additional stabilization for the protonated histidine and indirectly to the tetrahedral intermediate. This novel proposal unifies the seemingly conflicting experimental observations, which were previously seen as either supporting the charge relay mechanism or the neutral pKa histidine theory.
    Journal of Biological Chemistry 02/2011; 286(5):3587-3596. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanism of serine proteases prominently illustrates how charged amino acid residues and proton transfer events facilitate enzyme catalysis. Here we present an ultrahigh resolution (0.93 Å) x-ray structure of a complex formed between trypsin and a canonical inhibitor acting through a substrate-like mechanism. The electron density indicates the protonation state of all catalytic residues where the catalytic histidine is, as expected, in its neutral state prior to the acylation step by the catalytic serine. The carboxyl group of the catalytic aspartate displays an asymmetric electron density so that the O(δ2)-C(γ) bond appears to be a double bond, with O(δ2) involved in a hydrogen bond to His-57 and Ser-214. Only when Asp-102 is protonated on O(δ1) atom could a density functional theory simulation reproduce the observed electron density. The presence of a putative hydrogen atom is also confirmed by a residual mF(obs) - DF(calc) density above 2.5 σ next to O(δ1). As a possible functional role for the neutral aspartate in the active site, we propose that in the substrate-bound form, the neutral aspartate residue helps to keep the pK(a) of the histidine sufficiently low, in the active neutral form. When the histidine receives a proton during the catalytic cycle, the aspartate becomes simultaneously negatively charged, providing additional stabilization for the protonated histidine and indirectly to the tetrahedral intermediate. This novel proposal unifies the seemingly conflicting experimental observations, which were previously seen as either supporting the charge relay mechanism or the neutral pK(a) histidine theory.
    Journal of Biological Chemistry 02/2011; 286(5):3587-96. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pacifastin protease inhibitors are small cysteine-rich motifs of approximately 35 residues that were discovered in arthropods. The family is divided into two related groups on the basis of the composition of their minimalist inner core. In group I, the core is governed by a Lys10-Trp26 interaction, while in group II it is organized around Phe10. Group I inhibitors exhibit intriguing taxon specificity: potent arthropod-trypsin inhibitors from this group are almost inactive against vertebrate enzymes. The group I member SGPI-1 and the group II member SGPI-2 are extensively studied inhibitors. SGPI-1 is taxon-selective, while SGPI-2 is not. Individual mutations failed to explain the causes underlying this difference. We deciphered this phenomenon using comprehensive combinatorial mutagenesis and phage display. We produced a complete chimeric SGPI-1 / SGPI-2 inhibitor-phage library, in which the two sequences were shuffled at the highest possible resolution of individual residues. The library was selected for binding to bovine trypsin and crayfish trypsin. Sequence analysis of the selectants revealed that taxon specificity is due to an intra-molecular functional coupling between a surface loop and the Lys10-Trp26 core. Five SGPI-2 surface residues transplanted into SGPI-1 resulted in a variant that retained the "taxon-specific" core, but potently inhibited both vertebrate and arthropod enzymes. An additional rational point mutation resulted in a picomolar inhibitor of both trypsins. Our results challenge the generally accepted view that surface residues are the exclusive source of selectivity for canonical inhibitors. Moreover, we provide important insights into general principles underlying the structure-function properties of small disulfide-rich polypeptides, molecules that exist at the borderline between peptides and proteins.
    Journal of Molecular Biology 07/2007; 370(1):63-79. · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Complexation of the small serine protease inhibitor Schistocerca gregaria chymotrypsin inhibitor (SGCI), a member of the pacifastin inhibitor family, with bovine chymotrypsin was followed by NMR spectroscopy. (1)H-(15)N correlation (HSQC) spectra of the inhibitor with increasing amounts of the enzyme reveal tight and specific binding in agreement with biochemical data. Unexpectedly, and unparalleled among canonical serine protease inhibitors, not only residues in the protease-binding loop of the inhibitor, but also some segments of it located spatially far from the substrate-binding cleft of the enzyme were affected by complexation. However, besides changes, some of the dynamical features of the free inhibitor are retained in the complex. Comparison of the free and complexed inhibitor structures revealed that most, but not all, of the observed chemical shift changes can be attributed to minor structural transitions. We suggest that the classical 'scaffold + binding loop' model of canonical inhibitors might not be fully valid for the inhibitor family studied. In our view, this feature allows for the emergence of both taxon-specific and nontaxon-specific inhibitors in this group of small proteins.
    FEBS Journal 05/2006; 273(8):1831-42. · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cDNA for a 73-mer peptide containing two locust serine proteinase inhibitors was cloned, fused to the constitutive CaMV35S promoter and introduced into potato by Agrobacterium-mediated transformation. From 23 independent transgenic lines, three with high mRNA level and proteinase inhibitory activity were propagated in vitro and transferred to pots. The peptide from the leaves was identified by its N-terminal sequence and by K(i) values against chymotrypsin and trypsin. Colorado potato beetle larvae reared on transgenic plants grew slightly but significantly more slowly than those on control plants. This supports the notion that expression of multifunctional proteinase inhibitors of insect origin might be a good strategy to improve insect resistance in plants.
    Biotechnology Letters 07/2005; 27(12):829-34. · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of ostrich (Struthio camelus) trypsinogen genes was cloned from pancreatic cDNA. Its amino acid sequence compared to known trypsin sequences from other species shows high identity and suggests that it is a member of the phylogenetically anionic trypsinogen I subfamily. After cytoplasmic over expression in Escherichia coli and renaturation, the activation properties of ostrich trypsinogen were studied and compared to those of human trypsinogen 1 (also called as human cationic trypsinogen). Ostrich trypsinogen undergoes bovine enterokinase activation and autoactivation much faster than human trypsinogen 1 and exhibits on a synthetic substrate a somewhat higher enzymatic activity than the latter one. The most interesting property of ostrich trypsin is its relatively fast autolysis that can be explained via a mechanism different from the common mechanism for rat and human 1 trypsins. The latter proteases have a site, Arg117-Val118, where the autolysis starts and then goes on in a zipper-like fashion. This is absent from ostrich trypsin. Instead it has a couple of cleavage sites within regions 67-98, including two unusual ones, Arg76-Glu77 and Arg83-Ser84. These appear to be hydrolysed fast in a non-consecutive manner. Such an autolysis mechanism could not be inhibited by a single-site mutation which in humans is proposed to lead to pancreatitis.
    Biochimica et Biophysica Acta 05/2005; 1748(1):35-42. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SGCI (Schistocerca gregaria chymotrypsin inhibitor) and SGTI (Sch. gregaria trypsin inhibitor) are small, 35-residue serine protease inhibitors with intriguing taxon specificity: SGTI is specific for arthropod proteases while SGCI is an excellent inhibitor on both mammalian and arthropodal enzymes. Here we report the cloning, expression, and (15)N backbone dynamics investigations of these peptides. Successful expression could be achieved by a "dimeric" construct similar to the natural precursor of the inhibitors. An engineered methionine residue between the two modules served as a unique cyanogen bromide cleavage site to cleave the precursor and physically separate SGCI and SGTI. The overall correlation time of the precursor (5.29 ns) as well as the resulted SGCI (3.14 ns) and SGTI (2.96 ns) are as expected for proteins of this size. General order parameters (S(2)) for the inhibitors are lower than those characteristic of well-folded proteins. Values in the binding loop region are even lower. Interestingly, the distribution of residues for which a chemical exchange (R(ex)) term should be considered is strikingly different in SGCI and SGTI. Together with H-D exchange studies, this indicates that the internal dynamics of the two closely related molecules differ. We suggest that the dynamic properties of these inhibitors is one of the factors that determine their specificity.
    Biochemistry 04/2004; 43(12):3376-84. · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The natural defence system of plants often involves inhibitors of digestive enzymes of their pests. Modem and environmental-friendly methods try to increase this plant resistance by expressing heterologous protease inhibitors in crops. Here we report the effects of expressing a gene from desert locust (Schistocerca gregaria) encoding two serine protease inhibitors in potato on Colorado potato beetle (Leptinotarsa decemlineata) larvae. The gene encoding both peptides on a single chain was used for Agrobacterium-mediated transformation of potato plants. The presence of the active inhibitor protein in the leaves was verified. The feeding bioassays in the laboratory showed that despite the low level of the peptide in leaves, CPB larvae on transgenic plants have grown slightly but significantly more slowly than those on control potato plants. The results support the notion that expression of multifunctional proteinase inhibitors of insect origin in plants might be a good strategy to improve insect resistance.
    Communications in agricultural and applied biological sciences 02/2004; 69(3):281-7.