Are you Anja Kleinsteiber?

Claim your profile

Publications (2)4.87 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Surfactant protein-D (SP-D) is a member of the collagenous subfamily of calcium-dependent lectins (collectins). Associations between single nucleotide polymorphisms (SNPs) of the human gene coding surfactant protein-D (SFTPD) and infectious pulmonary diseases have been established by several groups. As the outcome of very preterm infants is mainly determined by pulmonary morbidity, the aim of the present study was to investigate the potential association between sequence variations within the SFTPD gene and pulmonary morbidity in preterm infants below 32 weeks of gestational age (GA). Four validated SNPs were genotyped with sequence-specific probes (TaqMan 7000) in 284 newborn infants below 32 weeks of GA. An association between the SNP rs1923537 and the development of respiratory distress syndrome (RDS) in the study population was found with a lower prevalence of RDS in infants having homozygous a minor allele genotype (odds ratio = 1.733, 95% confidence interval 1.139-2.636, adjusted p = 0.0408). Consecutively, the indicated polymorphism was found to be associated with a lower number of repetitive surfactant doses, and with a lower prevalence for the requirement of oxygen supplementation on day 28, as well as the use of diuretics. The finding of an association of a variant of the SFTPD gene, that has previously been shown to be associated with increased SP-D serum levels in adult patients with acute respiratory failure, i.e. RDS in preterm infants, may provide a basis for the initial risk assessment of RDS and modification of surfactant treatment strategies. A role for SP-D in neonatal pulmonary adaptation has to be postulated.
    Acta Paediatrica 10/2008; 98(1):112-7. · 1.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The collectin surfactant protein-D (SP-D) plays a significant role in innate immunity. Epidemiological studies described associations between single nucleotide polymorphisms (SNPs) of the human gene coding surfactant protein-D (SFTPD) and infectious pulmonary diseases. Studies on twins indicated very strong genetic dependence for serum levels of SP-D. The aim of this study was to determine the genetic influence of sequence variations within the SFTPD gene on the constitutional serum SP-D levels. We sequenced the 5' untranslated region (5'UTR), the coding region and the 3' region of the SFTPD gene of 32 randomly selected blood donors. Six validated SNPs were genotyped with sequence-specific probes (TaqMan 7000) in 290 German blood donors. Serum SP-D levels were analysed by ELISA, and the association of SFTPD haplotype estimates with the quantitative phenotype serum SP-D level was determined. One single SFTPD haplotype (allele frequency 13.53%) revealed a negative association with serum SP-D levels (P<0.0001). This was confirmed in a second prospectively collected group of blood donors (n=160, P=0.0034). The discovery of a frequent negative variant of the SFTPD gene provides a basis for genetic analysis of the function of SP-D in the resistance against pulmonary infections and inflammatory disorders in humans.
    Immunogenetics 04/2005; 57(1-2):1-7. · 2.89 Impact Factor