Andrea L Zamparini

The University of Edinburgh, Edinburgh, SCT, United Kingdom

Are you Andrea L Zamparini?

Claim your profile

Publications (2)19.02 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In Xenopus, the establishment of the anteroposterior axis involves two key signalling pathways, canonical Wnt and Nodal-related TGFbeta. There are also a number of transcription factors that feedback upon these pathways. The homeodomain protein Hex, an early marker of anterior positional information, acts as a transcriptional repressor, suppressing induction and propagation of the Spemman organiser while specifying anterior identity. We show that Hex promotes anterior identity by amplifying the activity of canonical Wnt signalling. Hex exerts this activity by inhibiting the expression of Tle4, a member of the Groucho family of transcriptional co-repressors that we identified as a Hex target in embryonic stem (ES) cells and Xenopus embryos. This Hex-mediated enhancement of Wnt signalling results in the upregulation of the Nieuwkoop centre genes Siamois and Xnr3, and the subsequent increased expression of the anterior endodermal marker Cerberus and other mesendodermal genes downstream of Wnt signalling. We also identified Nodal as a Hex target in ES cells. We demonstrate that in Xenopus, the Nodal-related genes Xnr1 and Xnr2, but not Xnr5 and Xnr6, are regulated directly by Hex. The identification of Nodal-related genes as Hex targets explains the ability of Hex to suppress induction and propagation of the organiser. Together, these results support a model in which Hex acts early in development to reinforce a Wnt-mediated, Nieuwkoop-like signal to induce anterior endoderm, and later in this tissue to block further propagation of Nodal-related signals. The ability of Hex to regulate the same targets in both Xenopus and mouse implies this model is conserved.
    Development 10/2006; 133(18):3709-22. · 6.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The paired-like homeobox gene expressed in embryonic stem cells Hesx1/HESX1 encodes a developmental repressor and is expressed in early development in a region fated to form the forebrain, with subsequent localization to Rathke's pouch, the primordium of the anterior pituitary gland. Mutations within the gene have been associated with septo-optic dysplasia, a constellation of phenotypes including eye, forebrain, and pituitary abnormalities, or milder degrees of hypopituitarism. We identified a novel homozygous nonconservative missense mutation (I26T) in the critical Engrailed homology repressor domain (eh1) of HESX1, the first, to our knowledge, to be described in humans, in a girl with evolving combined pituitary hormone deficiency born to consanguineous parents. Neuroimaging revealed a thin pituitary stalk with anterior pituitary hypoplasia and an ectopic posterior pituitary, but no midline or optic nerve abnormalities. This I26T mutation did not affect the DNA-binding ability of HESX1 but led to an impaired ability to recruit the mammalian Groucho homolog/Transducin-like enhancer of split-1 (Gro/TLE1), a crucial corepressor for HESX1, thereby leading to partial loss of repression. Thus, the novel pituitary phenotype highlighted here appears to be a specific consequence of the inability of HESX1 to recruit Groucho-related corepressors, suggesting that other molecular mechanisms govern HESX1 function in the forebrain.
    Journal of Clinical Investigation 11/2003; 112(8):1192-201. · 12.81 Impact Factor