Are you Allison L Moore?

Claim your profile

Publications (2)13.97 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small, volatile hydrocarbons, including trichloroethylene, vinyl chloride, carbon tetrachloride, benzene, and chloroform, are common environmental pollutants that pose serious health effects. We have developed transgenic poplar (Populus tremula x Populus alba) plants with greatly increased rates of metabolism and removal of these pollutants through the overexpression of cytochrome P450 2E1, a key enzyme in the metabolism of a variety of halogenated compounds. The transgenic poplar plants exhibited increased removal rates of these pollutants from hydroponic solution. When the plants were exposed to gaseous trichloroethylene, chloroform, and benzene, they also demonstrated superior removal of the pollutants from the air. In view of their large size and extensive root systems, these transgenic poplars may provide the means to effectively remediate sites contaminated with a variety of pollutants at much faster rates and at lower costs than can be achieved with current conventional techniques.
    Proceedings of the National Academy of Sciences 11/2007; 104(43):16816-21. · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: P450 2E1 is an important mammalian liver enzyme known to metabolize a wide range of compounds including several common environmental pollutants. The medicinal plant, Atropa belladonna, was transformed with Agrobacterium rhizogenes containing a binary vector with rabbit P450 2E1 in either the sense or antisense orientation. The resulting "hairy roots" were isolated and grown in liquid medium. Production of P450 2E1 protein was verified in the roots containing the 2E1 gene in the sense orientation. Transgenic and control root cultures were dosed with the environmental pollutant, trichloroethylene (TCE), and were analyzed for the TCE metabolites, chloral and trichloroethanol. The root cultures expressing the mammalian P450 2E1 had increased levels of the metabolites compared to the levels in the control roots. This method represents a quick way to screen transformants for expression of foreign genes before regeneration of whole plants, and also as a possible source of foreign protein for purification.
    Biotechnology and Bioengineering 03/2002; 77(4):462-6. · 4.16 Impact Factor