Alan S Bass

Merck, Whitehouse Station, New Jersey, United States

Are you Alan S Bass?

Claim your profile

Publications (21)41.75 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Inhibitors based on a benzo-fused spirocyclic oxazepine scaffold were discovered for stearoyl-coenzyme A (CoA) desaturase 1 (SCD1) and subsequently optimized to potent compounds with favorable pharmacokinetic profiles and in vivo efficacy in reducing the desaturation index in a mouse model. Initial optimization revealed potency preferences for the oxazepine core and benzylic positions, while substituents on the piperidine portions were more tolerant and allowed for tuning of potency and PK properties. After preparation and testing of a range of functional groups on the piperidine nitrogen, three classes of analogs were identified with single digit nanomolar potency: glycine amides, heterocycle-linked amides, and thiazoles. Responding to concerns about target localization and potential mechanism-based side effects, an initial effort was also made to improve liver concentration in an available rat PK model. An advanced compound 17m with a 5-carboxy-2-thiazole substructure appended to the spirocyclic piperidine scaffold was developed which satisfied the in vitro and in vivo requirements for more detailed studies.
    Bioorganic & medicinal chemistry letters 12/2012; · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In recognition of the tenth anniversary of the Safety Pharmacology Society (SPS), this review summarizes the significant events of the past 10years that have led to the birth, growth and evolution the SPS and presents a roadmap to the immediate-, intermediate- and long-term future of the SPS. The review discusses (i) the rationale for an optimal non-clinical Safety Pharmacology testing, (ii) the evolution of Safety Pharmacology over the last decade, (iii) its impact on drug discovery and development, (iv) the merits of adopting an integrated risk assessment approach, (v) the translation of non-clinical findings to humans and finally (vi) the future challenges and opportunities facing this discipline. Such challenges include the emergence of new molecular targets and new approaches to treat diseases, the rapid development of science and technologies, the growing regulatory concerns and associated number of guidance documents, and the need to train and educate the next generation of safety pharmacologist.
    Journal of pharmacological and toxicological methods 06/2011; 64(1):7-15. · 2.32 Impact Factor
  • 03/2010; , ISBN: 9780470571224
  • Journal of Pharmacological and Toxicological Methods - J PHARMACOL TOXICOL METHOD. 01/2010; 62(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Testing for possible cardiovascular side effects of new drugs has been an essential part of drug development for years. A more detailed analysis of the electrocardiogram (ECG) to detect effects on ventricular repolarization (effects on the QT interval), as a marker for possible proarrhythmic potential has been added to that evaluation in recent years. State-of-the art evaluation of drug-induced effects on the QT interval have evolved, but due to the complexity of the assessment, the trend in safety pharmacology studies has been to collect large numbers of high quality ECGs to allow for a robust assessment including the influence of heart rate on the QT interval apart from possible drug-induced effects. Since an assessment of the ECG is often included in toxicological studies, one can consider making such an assessment using ECG data from routine toxicological studies. This review summarizes various aspects of both safety pharmacology and toxicology studies with regards to their impact on the quality and quantity of ECG data that one can reasonably derive. We conclude that ECG data from toxicological studies can offer complementary ECG data that can strengthen a risk assessment. However, for the great majority of standard toxicity studies conducted, the ECG data collected do not permit an adequate assessment of drug-induced effects on the QT interval with the sensitivity expected from the ICH S7B guidelines. Furthermore, sponsors should be discouraged from performing any analyses on low quality ECGs to avoid generating misleading data. Substantial improvements in ECG quality and quantity are available, thereby making a QT interval assessment within the context of a standard toxicological study feasible, but these methods may require a larger commitment of resources from the sponsor. From the viewpoint of risk mitigation and limiting the attrition of promising new therapies, a commitment of resources to insure ECG data quality in either toxicology or safety pharmacology studies may be well justified.
    Journal of pharmacological and toxicological methods 06/2009; 60(2):107-16. · 2.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Identification of novel new molecules which hold the greatest promise of safe and effective therapies remains a continuous challenge to the pharmaceutical industry. This has led the industry to implement strategies for identification of the most promising candidates during the discovery phase and for their safe and expeditious advancement through development. Testing for potential liable properties in the discovery phase has included the evaluation of major areas of pharmaceutics that have led to failure such as its physical and pharmaceutical properties, drug metabolism and pharmacokinetic characteristics, various safety endpoints including pre-development safety pharmacology, general toxicology and genetic toxicology and interrogation of counter-screen data to identify off-target affinities (i.e., receptors, ion channels, transporters, kinases, etc.) that pose a concern. Amongst the many important areas of concern is the potential for toxicities of the major organ systems. To mitigate this concern, a strategy pursued is to identify the prominent toxicological properties of the candidate prior to its recommendation for development. The results of these studies in discovery allow exclusion of the candidate before the expenditure of resources and time typical of development. In addition, the discovery phase toxicology studies serve to address key questions that may have arisen from the study of another molecule, the phenotypic profile from pre-clinical models where the therapeutic target has been genetically modified or concerns that have been raised as a result of other investigations. Importantly, the results of the exploratory drug safety studies will be used by the sponsor to judge the potential risks associated with continued pursuit of a potential development candidate. In many ways, pre-clinical toxicological investigations in discovery serve the important objective of identifying the most promising candidates to progress into development and onto registration.
    Journal of pharmacological and toxicological methods 06/2009; 60(1):69-78. · 2.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ObjectiveDrug-induced torsades de pointes (TdP) arrhythmia is a serious public health concern that has significantly slowed the advancement of promising new therapeutic agents to the marketplace. Modeling for the potential to produce TdP has relied in part on the surrogate biomarker QT interval prolongation, measured in vivo in animals and in the clinic in man. This study was a comparison of the effects of PNU-142093, a selective 5HT1D-serotonin receptor agonist, on QT interval prolongation under restraint and non-restraint conditions in conscious cynomolgus non-human primates.MethodsLead II electrocardiograms (ECG) were collected following an oral single-dose (non-restraint conditions using radio-telemetry) and single- and multiple-doses for 14 days (restraint conditions using electrodes applied to the surface) at doses of 0, 5, 15, and 25 mg/kg. ECG were collected from non-restrained animals predose and for up to 5 hrs, and again at 7 hrs, postdose on 4 different days in a Latin-square crossover design; N=4/sex/dose level. ECG were collected from restrained animals on days 1, 7, and 13, predose and at approximately 4 hrs postdose; N=2/sex/group.ResultsNon-restrained animal heart rate ranged from 159±22.1 to 168±21.4 beats/minute when compared to restrained animal heart rate (ranging from 242±17.2 to 246±11.5 beats/minute), suggesting that non-restrained animals were under less stress. In non-restrained animals, PNU-142093 produced a non-dose related decrease in heart rate, associated with a dose-related increase in QT and QTc (QT interval corrected for changes in heart rate) intervals, which was accompanied by alterations in T-wave morphology (e.g., widening and notching of the T wave). In restrained non-human primates, PNU-142093 had no effect on heart rate or ECG morphology on any day of dosing and no statistically significant effect on QT or QTc intervals on days 1 or 7 of dosing. By day 13 there were statistically significant increases in QT and QTc intervals at 15 and 25 mg/kg. The increase in QTc interval in restrained animals on day 13 was 29±12 and 30±19 msec at 15 and 25 mg/kg/day, respectively, and that in non-restrained animals was 65±23 and 73±28 msec.DiscussionThese data demonstrate an ability to detect problematic drugs in conscious cynomolgus non-human primates using both restraint and non-restraint procedures. They further show that the sensitivity of these assays to identify this signal of cardiac risk is significantly improved under the condition of non-restraint.
    Journal of pharmacological and toxicological methods 01/2009; · 2.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Knowledge of the cardiac safety of emerging new drugs is an important aspect of assuring the expeditious advancement of the best candidates targeted at unmet medical needs while also assuring the safety of clinical trial subjects or patients. Present methodologies for assessing drug-induced torsades de pointes (TdP) are woefully inadequate in terms of their specificity to select pharmaceutical agents, which are human arrhythmia toxicants. Thus, the critical challenge in the pharmaceutical industry today is to identify experimental models, composite strategies, or biomarkers of cardiac risk that can distinguish a drug, which prolongs cardiac ventricular repolarization, but is not proarrhythmic, from one that prolongs the QT interval and leads to TdP. To that end, the HESI Proarrhythmia Models Project Committee recognized that there was little practical understanding of the relationship between drug effects on cardiac ventricular repolarization and the rare clinical event of TdP. It was on that basis that a workshop was convened in Virginia, USA at which four topics were introduced by invited subject matter experts in the following fields: Molecular and Cellular Biology Underlying TdP, Dynamics of Periodicity, Models of TdP Proarrhythmia, and Key Considerations for Demonstrating Utility of Pre-Clinical Models. Contained in this special issue of the British Journal of Pharmacology are reports from each of the presenters that set out the background and key areas of discussion in each of these topic areas. Based on this information, the scientific community is encouraged to consider the ideas advanced in this workshop and to contribute to these important areas of investigations over the next several years.British Journal of Pharmacology (2008) 154, 1491–1501; doi:fn8
    British Journal of Pharmacology 07/2008; 154(7):1491 - 1501. · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drug-induced torsades de pointes (TdP) remains a significant public health concern that has challenged scientists who have the responsibility of advancing new medicines through development to the patient, while assuring public safety. As a result, from the point of discovering a new molecule to the time of its registration, significant efforts are made to recognize potential liabilities, including the potential for TdP. With this background, the ILSI (HESI) Proarrhythmia Models Project Committee recognized that there was little practical understanding of the relationship between drug effects on cardiac ventricular repolarization and the rare clinical event of TdP. A workshop was therefore convened at which four topics were considered including: Molecular and Cellular Biology Underlying TdP, Dynamics of Periodicity, Models of TdP Proarrhythmia and Key Considerations for Demonstrating Utility of Pre-Clinical Models. The series of publications in this special edition has established the background, areas of debate and those that deserve scientific pursuit. This is intented to encourage the research community to contribute to these important areas of investigation in advancing the science and our understanding of drug-induced proarrhythmia.
    British Journal of Pharmacology 07/2008; 154(7):1550-3. · 5.07 Impact Factor
  • Journal of Pharmacological and Toxicological Methods - J PHARMACOL TOXICOL METHOD. 01/2008;
  • [Show abstract] [Hide abstract]
    ABSTRACT: IntroductionThe objectives of this survey were to obtain a global information update regarding current industry perspectives that describe Safety Pharmacology programs as they relate to the ICH S7A and S7B regulatory guidelines but also to obtain a broader perspective of other practises practices in the field currently used by companies. Preliminary findings were presented at the 7th Annual Meeting of the Safety Pharmacology Society (SPS) (Edinburgh, Scotland, Sept 19–21, 2007).MethodsThe survey was distributed by the SPS to 125 pharmaceutical companies. Survey topics included (a) an update on ICH S7A and S7B practices, (b) frontloading Safety Pharmacology studies prior to selection of candidate drugs, (c) abuse and dependence-liability studies and (d) an extended evaluation of industry practises practices as assessed by Contract Research Organizations (CROs).ResultsRespondents (> 94%) include GLP core battery (CV, CNS and respiratory) studies in the drug package submitted to regulatory agencies, and ∼ 40% also submit studies on gastrointestinal and renal function. Respondents to the ICH S7B aspects indicate ∼ 98% include the hERG assay and QT interval (in vivo) data in submissions, 63% include APD in vitro data and another 23% APD in vivo and other cardiac channel data (26%). SP frontloading is performed by 78% of all responding companies. Respondents indicate that 39% of these non-GLP CV studies are conducted before lead optimization (LO) and 85% during LO and before candidate drug selection. The hERG, CNS selectivity binding screens and rodent behavioral studies are frontloaded by 100%, 90% and 74% of respondents. Responding CROs (26) were surveyed on the services offered including Irwin or Functional Observational Battery (FOB) tests (70%), respiratory studies (85%), in vivo telemeterized dogs (69%) and in vitro CV studies (50%). Only 38% of SP studies are combined with toxicology studies at the CROs.DiscussionThe survey results indicate that ICH S7A core battery studies are implemented by most of the responding companies with a clear trend of an enhanced submission of renal and GI studies. The impact of ICH S7B is clear since, all respondents assess cardiac repolarization using cellular hERG (IKr) and whole animal (QT interval) assays as a component of their safety assessment. Responses indicate a diversity of approaches for conducting abuse liability studies, which primarily use the methods of self-administration and drug discrimination. While early SP frontloading of studies seems to vary, the methods used appear to be generic to some extent and include in vitro ‘off-target’ evaluations and in vivo tests to determine the potential for CNS and cardiovascular issues.
    Journal of pharmacological and toxicological methods 01/2008; · 2.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biological therapeutic agents (biologicals), such as monoclonal antibodies (mAbs), are increasingly important in the treatment of human disease, and many types of biologicals are in clinical development. During preclinical drug development, cardiovascular safety pharmacology studies are performed to assess cardiac safety in accord with the ICH S7A and S7B regulations that guide these studies. The question arises, however, whether or not it is appropriate to apply these guidelines, which were devised primarily to standardize small molecule drug testing, to the cardiovascular evaluation of biologicals. We examined the scientific literature and formed a consensus of scientific opinion to determine if there is a rational basis for conducting an in vitro hERG assay as part of routine preclinical cardiovascular safety testing for biologicals. We conclude that mAb therapeutics have very low potential to interact with the extracellular or intracellular (pore) domains on hERG channel and, therefore, are highly unlikely to inhibit hERG channel activity based on their targeted, specific binding properties. Furthermore, mAb are large molecules (> 140,000 Da) that cannot cross plasma membranes and therefore would be unable to access and block the promiscuous inner pore of the hERG channel, in contrast with typical small molecule drugs. Consequently, we recommend that it is not appropriate to conduct an in vitro hERG assay as part of a preclinical strategy for assessing the heart rate corrected QT interval (QTc) prolongation risk of mAbs and other types of biologicals. It is more appropriate to assess QTc risk by integrating cardiovascular endpoints into repeat-dose general toxicology studies performed in an appropriate non-rodent species. These recommendations should help shape future regulatory strategy and discussions for the cardiovascular safety pharmacology testing of mAbs as well as other biologicals and provide guidance for the preclinical cardiovascular evaluation of such agents.
    Journal of pharmacological and toxicological methods 01/2008; · 2.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Health and Environmental Sciences Institute of the International Life Sciences Institute (ILSI/HESI) Cardiovascular Safety Subcommittee outlined a set of in vivo telemetry studies to determine how well this preclinical model identified compounds known to cause torsades de pointes (TdP) and prolong QT interval in humans. In the original analysis of these data, QT, QTcB (Bazett model), QTcF (Fridericia model), and QTcQ (animal-specific model) were evaluated. We further evaluate the statistical properties of these measurements, using a method that can properly account for the sources of variability in the dataset. The ILSI/HESI telemetry studies were conducted as a double Latin square design where eight dogs each received a vehicle control and three dose levels of a compound on four separate dosing days. We statistically analyzed the QT/QTc intervals using a repeated measures analysis of covariance and evaluate the powers for QT, QTcF and QTcQ based on simulations. The analyses for QTcF and QTcB intervals show that all six compounds which were known to cause TdP in humans were identified as positive and all six compounds known to be free of TdP events in their clinical use had no statistically significant treatment-related effects, while the analyses for QTcQ identified all positive compounds except pimozide. The power analysis shows that the method can detect a 7% increment of QT, a 5% increment of QTcF, and a 4% increment of QTcQ, with greater than 80% of power when n=8. We describe a repeated measures procedure to perform statistical analysis of covariance on Latin square designs and show that it can be used to detect meaningful changes in the analysis of QT/QTc intervals.
    Journal of Pharmacological and Toxicological Methods 01/2007; 56(2):95-102. · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Drugs that delay cardiac repolarization pose potential safety risks to patients and cause serious regulatory concern because of the link between QT interval prolongation and the potentially fatal arrhythmia torsades de pointes (TdP). Predicting which drugs will cause TdP is an inexact and difficult science. The utility of non-clinical assays was not well understood due in part to variability in methods, species, and consistency in the assays reported in the literature. The Health and Environmental Sciences Institute of the International Life Sciences Institute (ILSI/HESI) outlined a set of studies to determine how well selected commonly used non-clinical assays identified compounds known to cause TdP and prolong QT interval in humans. Compounds known to prolong ventricular repolarization and compounds considered safe by years of clinical use were tested in three assays: HERG ionic current, Purkinje fiber repolarization, and in vivo QT studies in conscious telemeterized dogs. The data from each of these assays demonstrate that compounds that may pose a proarrhythmia risk for patients can be distinguished from those that are considered safe. Taken collectively, the in-vitro and in-vivo preclinical results can be integrated to develop an accurate preclinical risk assessment to support clinical safety.
    Journal of Pharmacological and Toxicological Methods 01/2006; 54(2):116-29. · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The International Conference on Harmonization, Topic S7A guidance (ICH S7A) on safety pharmacology for human pharmaceuticals has been in effect for 3 years in Europe, the United States and Japan. Surveys of the pharmaceutical industry, regulatory agencies and the audience attending the 4th Annual Meeting of the Safety Pharmacology Society have helped identify and address areas of controversy, as well as those challenges that have emerged since implementation of the guidance worldwide. Overall, ICH S7A has been successfully implemented. The guidance provides for "Good Laboratory Practice" compliant "safety pharmacology core battery" of studies that are generally performed prior to first administration to humans. The approach is science-driven and specifies the use of robust and sophisticated in vitro and/or in vivo assays. There are, however, some areas that require further refinement/clarification such as the specifics of study design including the selection of dose/concentration, choice of species, modeling of the temporal pharmacodynamic changes in relation to pharmacokinetic profile of parent drug and major metabolites, use of an appropriate sample size, statistical power analysis as a means of demonstrating the sensitivity of the model system, testing of human-specific metabolites and demonstrating not only the model's sensitivity, but also its specificity for predicting adverse events in humans. There was also discussion of when these studies are needed in relation to the clinical development plan. Representatives from the pharmaceutical industry and regulatory agencies see the implementation of ICH S7A as a major step forward towards identifying the risk to Phase 1 and 2 volunteers and patients. It remains to be seen, however, whether and in what ways the ICH S7A-based strategy will contribute to the modification of the integrated risk assessment during the latter stages of clinical development or once drugs have been introduced to the marketplace.
    Journal of Pharmacological and Toxicological Methods 01/2005; 52(1):22-9. · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A growing number of drugs and drug combinations inhibit cardiac potassium ion conductance and ventricular repolarization, and increase cardiac APD, QT interval, and risk of potentially fatal TdP. The past decade has seen an explosion of research advances into the mechanism of action underpinning these observations, and an unprecedented level of collaboration between academia, industry, and regulatory authorities to define effective strategies for accurate prediction of increased TdP risk (if any) in humans, based upon nonclinical and/or clinical endpoints. Because the incidence of TdP is so very low, even for drugs for which the association is known, the risk can only be assessed based upon surrogate markers (signals) in in vitro and in vivo non-clinical studies as well as in clinical trials. In this article, we review both the strengths and weaknesses of current methodologies and regulatory practices for assessment of TdP risk for pharmaceuticals.
    Journal of Pharmacological and Toxicological Methods 01/2005; 52(1):12-21. · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of experiments were undertaken to evaluate the accuracy, precision, specificity, and sensitivity of an automated, infrared photo beam-based open field motor activity system, the MotorMonitor v. 4.01, Hamilton-Kinder, LLC, for use in a good laboratory practices (GLP) Safety Pharmacology laboratory. This evaluation consisted of two phases: (1) system validation, employing known inputs using the EM-100 Controller Photo Beam Validation System, a robotically controlled vehicle representing a rodent and (2) biologic validation, employing groups of rats treated with the standard pharmacologic agents diazepam or D-amphetamine. The MotorMonitor's parameters that described the open-field activity of a subject were: basic movements, total distance, fine movements, x/y horizontal ambulations, rearing, and total rest time. These measurements were evaluated over a number of zones within each enclosure. System validation with the EM-100 Controller Photo Beam Validation System showed that all the parameters accurately and precisely measured what they were intended to measure, with the exception of fine movements and x/y ambulations. Biologic validation using the central nervous system depressant diazepam at 1, 2, or 5 mg/kg, i.p. produced the expected dose-dependent reduction in rat motor activity. In contrast, the central nervous system stimulant D-amphetamine produced the expected increases in rat motor activity at 0.1 and 1 mg/kg, i.p, demonstrating the specificity and sensitivity of the system. Taken together, these studies of the accuracy, precision, specificity, and sensitivity show the importance of both system and biologic validation in the evaluation of an automated open field motor activity system for use in a GLP compliant laboratory.
    Journal of Pharmacological and Toxicological Methods 01/2005; 52(1):159-67. · 2.15 Impact Factor
  • Workshop: Moving Towards Better Predictors of Drug-Induced Torsades de Pointes (TdP). 01/2005;
  • Journal of Pharmacological and Toxicological Methods 01/2004; 49(3):153-8. · 2.15 Impact Factor
  • Journal of Pharmacological and Toxicological Methods 01/2004; 49(3):141-4. · 2.15 Impact Factor