Adam K. Leroy

National Radio Astronomy Observatory, Charlottesville, Virginia, United States

Are you Adam K. Leroy?

Claim your profile

Publications (148)518.79 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Observed HI accretion around nearby galaxies can only account for a fraction of the gas supply needed to sustain the currently observed star formation rates. It is possible that additional accretion happens in the form of low column density cold flows, as predicted by numerical simulations of galaxy formation. To contrain the presence and properties of such flows, we present deep HI observations obtained with the NRAO Green Bank Telescope of an area measuring 4 by 4 degrees around NGC 2403. These observations, with a 5 sigma detection limit of 2.4 x 10^18 cm^-2 over a 20 km/s linewidth, reveal the presence of a low-column density, extended cloud outside the main HI disk, about 17' (~16 kpc or ~2R25) to the NW of the center of the galaxy. The total HI mass of the cloud is 6.3 x 10^6 Msun, or 0.15 percent of the total HI mass of NGC 2403. The cloud is associated with an 8-kpc anomalous-velocity HI filament in the inner disk, previously observed in deep VLA observations by Fraternali et al. (2001, 2002). We discuss several scenarios for the origin of the cloud, and conclude that it is either accreting from the intergalactic medium, or is the result of a minor interaction with a neigbouring dwarf galaxy.
    07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The kinematic complexity and the favorable position of M51 on the sky make this galaxy an ideal target to test different theories of spiral arm dynamics. Taking advantage of the new high-resolution PdBI Arcsecond Whirlpool Survey data, we undertake a detailed kinematic study of M51 to characterize and quantify the origin and nature of the non-circular motions. Using a tilted-ring analysis supported by several other archival data sets, we update the estimation of M51's position angle (P.A. = (173 ± 3)°) and inclination (i = (22 ± 5)°). Harmonic decomposition of the high-resolution (~40 pc) CO velocity field shows the first kinematic evidence of an m = 3 wave in the inner disk of M51 with a corotation at R CR, m = 3 = 1.1 ± 0.1 kpc and a pattern speed of Ω p, m = 3 ≈ 140 km s-1 kpc-1. This mode seems to be excited by the nuclear bar, while the beat frequencies generated by the coupling between the m = 3 mode and the main spiral structure confirm its density-wave nature. We observe also a signature of an m = 1 mode that is likely responsible for the lopsidedness of M51 at small and large radii. We provide a simple method to estimate the radial variation of the amplitude of the spiral perturbation (V sp) attributed to the different modes. The main spiral arm structure has langV sprang = 50-70 km s-1, while the streaming velocity associated with the m = 1 and m = 3 modes is, in general, two times lower. Our joint analysis of H I and CO velocity fields at low and high spatial resolution reveals that the atomic and molecular gas phases respond differently to the spiral perturbation due to their different vertical distribution and emission morphology. Based on observations carried out with the IRAM Plateau de Bure Interferometer and 30 m telescope. IRAM is operated by INSY/CNRS (France), MPG (Germany), and IGN (Spain).
    The Astrophysical Journal 03/2014; 784(1):4. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the spatially resolved Radio Continuum-Star Formation Rate (RC-SFR) relation using state-of-the-art star-formation (SF) tracers in a sample of 17 THINGS galaxies. We use hybrid Sigma_SFR maps (GALEX FUV plus Spitzer 24 mu), RC maps at 22/18 cm from the WSRT SINGS survey, and H-alpha maps to correct for thermal RC emission. We compare azimuthally averaged radial profiles of the RC and FUV/MIR-based Sigma_SFR maps and study pixel-by-pixel correlations at fixed linear scales of 1.2 and 0.7 kpc. The ratio of the integrated SFRs from the RC emission to that of the FUV/MIR-based SF tracers is R_int = 0.78 +/- 0.38, consistent with Condon's relation. We find a tight correlation between the radial profiles of the radio and FUV/MIR-based Sigma_SFR for the entire extent of the disk. The ratio R of the azimuthally averaged radio to FUV/MIR-based Sigma_SFR agrees with the integrated ratio with only small quasi-random fluctuations as function of radius. Pixel-by-pixel plots show a tight correlation in log-log diagrams of radio to FUV/MIR-based Sigma_SFR, with a typical standard deviation of a factor of two. Averaged over our sample we find (Sigma_SFR)_RC ~ (Sigma_SFR)_hyb^{0.63+/-0.25} implying that data points with high Sigma_SFR are relatively radio bright, whereas the reverse is true for low Sigma_SFR. We interpret this as a result of spectral ageing of CRe, which is supported by the radio spectral index: data points dominated by young CRe are relatively radio dim, those dominated by old CRe are relatively radio dim. The ratio of radio to FUV/MIR-based integrated SFR is independent of global galaxy parameters, suggesting that we can use RC emission as a universal SF tracer for galaxies, if we restrict ourselves to global or azimuthally averaged measurements. A magnetic field-SFR relation, B ~ SFR_hyb^{0.30+/-0.02}, holding both globally and locally, can explain our results. (abridged)
    02/2014; 147(5).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using data from the PdBI Arcsecond Whirlpool Survey (PAWS), we have generated the largest extragalactic giant molecular cloud (GMC) catalog to date, containing 1507 individual objects. GMCs in the inner M51 disk account for only 54% of the total 12CO(1-0) luminosity of the survey, but on average they exhibit physical properties similar to Galactic GMCs. We do not find a strong correlation between the GMC size and velocity dispersion, and a simple virial analysis suggests that ~30% of GMCs in M51 are unbound. We have analyzed the GMC properties within seven dynamically motivated galactic environments, finding that GMCs in the spiral arms and in the central region are brighter and have higher velocity dispersions than inter-arm clouds. Globally, the GMC mass distribution does not follow a simple power-law shape. Instead, we find that the shape of the mass distribution varies with galactic environment: the distribution is steeper in inter-arm region than in the spiral arms, and exhibits a sharp truncation at high masses for the nuclear bar region. We propose that the observed environmental variations in the GMC properties and mass distributions are a consequence of the combined action of large-scale dynamical processes and feedback from high-mass star formation. We describe some challenges of using existing GMC identification techniques for decomposing the 12CO(1-0) emission in molecule-rich environments, such as M51's inner disk. Based on observations carried out with the IRAM Plateau de Bure Interferometer and 30 m telescope. IRAM is operated by INSY/CNRS (France), MPG (Germany) and IGN (Spain).
    The Astrophysical Journal 01/2014; 784(1):3. · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The [CII] 158 micron line is typically the brightest far-IR emission line from star-forming galaxies. To use this line as a tracer of star-formation and a diagnostic of ISM conditions, we must understand which phases of the ISM and what gas heating sources are contributing to it. As a massive, nearby galaxy, Andromeda is ideal for studying [CII] because we can resolve individual star-forming regions in the galaxy, but it is representative of more distant galaxies. To address the origins of [CII], we have assembled a unique set of observations including: [CII] 158 micron and [OI] 63 micron lines from Herschel PACS; fully sampled optical integral field spectroscopy from PPAK on the Calar Alto 3.5m, and Herschel dust continuum mapping from 70-500 microns. These observations span a range of conditions across Andromeda. We present first results on how [CII] correlates with the far-IR continuum on ~50 pc scales. In particular, we find that star-forming regions in M31 do not exhibit a "[CII] line deficit" even in regions where the dust is very warm. Using the optical line emission, we determine the fraction of [CII] emission spatially associated with star-forming regions. Our method implies a high fraction ~40-75% of [CII] emission is coming from diffuse regions. These diffuse regions appear to dominated by the UV interstellar radiation field, which we infer from the Pan-Chromatic Hubble Andromeda Treasury data to be dominated by B stars. Our results suggest that studies using [CII] to trace the massive star-formation rate must take into account the the contribution of older stellar populations in heating the ISM gas.
    01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the key questions in astronomy today is how galaxies accrete their gas and then convert that gas into stars. The HI Nearby Galaxies Survey (THINGS), conducted with the VLA, has made great strides towards answering these questions, but it lacked sensitivity to the extended, diffuse HI in and around galaxies. To rectify this problem, my collaborators and I have recently completed a Green Bank Telescope (GBT) HI survey of the THINGS galaxies. The GBT's clean beam, low system temperature and good angular resolution make it the ideal single-dish telescope for observing low column density HI. Our survey was capable of detecting HI emission from analogs to Lyman limit systems, provided it fills the GBT beam. I will present the first results from our search for low column density tidal features and infall from the ``cosmic web", and I will detail my future plans.
    01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In both the Milky Way and nearby galaxies, the presence of dense molecular gas is correlated with recent star formation, suggesting that the formation of this gas may represent a key regulating step in the star formation process. Testing this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation. Until now, these observations have been limited by the faintness of dense gas tracers like HCN and HCO+, but new instruments like the 4mm receiver on Robert C. Byrd Green Bank Telescope (GBT) -- the largest single-dish millimeter telescope -- are poised to change this picture. We present GBT maps of the dense gas tracers HCN and HCO+ in the prototypical nearby starburst galaxy M82. The HCN and HCO+ in the disk of M82 correlates both with recent star formation and the diffuse molecular gas and shows kinematics consistent with a rotating torus. HCO+ emission is also associated with the outflow of molecular gas previously identified in CO. These observations mark the first time that dense molecular gas like HCO+ has been associated with an outflow in a nearby galaxy and suggests that the outflow of dense molecular gas from the center of galaxies like M82 may regulate the star formation globally. Finally, the CO-to-HCN and CO-to-HCO+ line ratios reveal that there is more dense gas at the center of M82, pointing to the starburst as a key driver of this relationship. These results establish that the GBT can efficiently map the dense molecular gas at 90 GHz in nearby galaxies; this capability will increase further with the 16-element feed array currently being built for the GBT.
    01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Galaxies observed at redshift z > 6, when the Universe was less than a billion years old, thus far very rarely show evidence of the cold dust that accompanies star formation in the local Universe, where the dust-to-gas mass ratio is around one per cent. A prototypical example is the galaxy Himiko (z = 6.6), which-a mere 840 million years after the Big Bang-is forming stars at a rate of 30-100 solar masses per year, yielding a mass assembly time of about 150 × 10(6) years. Himiko is thought to have a low fraction (2-3 per cent of the Sun's) of elements heavier than helium (low metallicity), and although its gas mass cannot yet be determined its dust-to-stellar mass ratio is constrained to be less than 0.05 per cent. The local dwarf galaxy I Zwicky 18, which has a metallicity about 4 per cent that of the Sun's and is forming stars less rapidly (assembly time about 1.6 × 10(9) years) than Himiko but still vigorously for its mass, is also very dust deficient and is perhaps one of the best analogues of primitive galaxies accessible to detailed study. Here we report observations of dust emission from I Zw 18, from which we determine its dust mass to be 450-1,800 solar masses, yielding a dust-to-stellar mass ratio of about 10(-6) to 10(-5) and a dust-to-gas mass ratio of 3.2-13 × 10(-6). If I Zw 18 is a reasonable analogue of Himiko, then Himiko's dust mass must be around 50,000 solar masses, a factor of 100 below the current upper limit. These numbers are quite uncertain, but if most high-z galaxies are more like Himiko than like the very-high-dust-mass galaxy SDSS J114816.64 + 525150.3 at z ≈ 6, which hosts a quasar, then our prospects for detecting the gas and dust inside such galaxies are much poorer than hitherto anticipated.
    Nature 12/2013; · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Observations of the Milky Way and nearby galaxies show that dense molecular gas correlates with recent star formation, suggesting that the formation of this gas phase may help regulate star formation. A key test of this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation, but these observations have been limited because of the faintness of dense gas tracers like HCN and HCO+. Here we demonstrate the power of the Robert C. Byrd Green Bank Telescope -- the largest single-dish millimeter radio telescope -- for mapping dense gas in galaxies by presenting the most sensitive maps yet of HCN and HCO+ in the starburst galaxy M82. The HCN and HCO+ in the disk of this galaxy correlates with both recent star formation and more diffuse molecular gas and shows kinematics consistent with a rotating torus. The HCO+ emission extending to the north and south of the disk is coincident with the outflow previously identified in CO and traces the eastern edge of the hot outflowing gas. The central starburst region has a higher ratio of star formation to dense gas than the outer regions, pointing to the starburst as a key driver of this relationship. These results establish that the GBT can efficiently map the dense molecular gas at 90 GHz in nearby galaxies, a capability that will increase further with the 16 element feed array under construction.
    The Astrophysical Journal 12/2013; 780(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We compare the properties of giant molecular clouds (GMCs) in M51 identified by the Plateau de Bure Interferometer Whirlpool Arcsecond Survey (PAWS) with GMCs identified in wide-field, high resolution surveys of CO emission in M33 and the Large Magellanic Cloud (LMC). We find that GMCs in M51 are larger, brighter and have higher velocity dispersions relative to their size than equivalent structures in M33 and the LMC. These differences imply that there are genuine variations in the average mass surface density of the different GMC populations. To explain this, we propose that the pressure in the interstellar medium surrounding the GMCs plays a role in regulating their density and velocity dispersion. We find no evidence for a correlation between size and linewidth in any of M51, M33 or the LMC when the CO emission is decomposed into GMCs, although moderately robust correlations are apparent when regions of contiguous CO emission (with no size limitation) are used. Our work demonstrates that observational bias remains an important obstacle to the identification and study of extragalactic GMC populations using CO emission, especially in molecule-rich galactic environments.
    The Astrophysical Journal 12/2013; 779(1):46. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Plateau de Bure Interferometer Arcsecond Whirlpool Survey has mapped the molecular gas in the central ~9 kpc of M51 in its 12CO(1-0) line emission at a cloud-scale resolution of ~40 pc using both IRAM telescopes. We utilize this data set to quantitatively characterize the relation of molecular gas (or CO emission) to other tracers of the interstellar medium, star formation, and stellar populations of varying ages. Using two-dimensional maps, a polar cross-correlation technique and pixel-by-pixel diagrams, we find: (1) that (as expected) the distribution of the molecular gas can be linked to different components of the gravitational potential; (2) evidence for a physical link between CO line emission and radio continuum that seems not to be caused by massive stars, but rather depends on the gas density; (3) a close spatial relation between polycyclic aromatic hydrocarbon (PAH) and molecular gas emission, but no predictive power of PAH emission for the molecular gas mass; (4) that the I - H color map is an excellent predictor of the distribution (and to a lesser degree, the brightness) of CO emission; and (5) that the impact of massive (UV-intense) young star-forming regions on the bulk of the molecular gas in central ~9 kpc cannot be significant due to a complex spatial relation between molecular gas and star-forming regions that ranges from cospatial to spatially offset to absent. The last point, in particular, highlights the importance of galactic environment—and thus the underlying gravitational potential—for the distribution of molecular gas and star formation.
    The Astrophysical Journal 12/2013; 779(1):42. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the data of the Plateau de Bure Arcsecond Whirlpool Survey, a high spatial and spectral resolution 12CO (1-0) line survey of the inner ~10 × 6 kpc of the M51 system, and the first wide-field imaging of molecular gas in a star-forming spiral galaxy with resolution matched to the typical size of giant molecular clouds (40 pc). We describe the observation, reduction, and combination of the Plateau de Bure Interferometer (PdBI) and IRAM-30 m "short spacing" data. The final data cube attains 1.''1 resolution over the ~270'' × 170'' field of view, with sensitivity to all spatial scales from the combination of PdBI and IRAM-30 m data, and a brightness sensitivity of 0.4 K (1σ) in each 5 km s-1-wide channel map. We find a CO luminosity of 9 × 108 K km s-1 pc2, corresponding to a molecular gas mass of 4 × 109 M ⊙ for a standard CO-to-H2 conversion factor. Unexpectedly, we find that a large fraction of this emission, (50 ± 10)%, arises mostly from spatial scales larger than 36'' ~= 1.3 kpc. Through a series of tests, we demonstrate that this extended emission does not result from a processing artifact. We discuss its origin in light of the stellar component, the 12CO/13CO ratio, and the difference between the kinematics and structure of the PdBI-only and hybrid synthesis (PdBI + IRAM-30 m) images. The extended emission is consistent with a thick, diffuse disk of molecular gas with a typical scale height of ~200 pc, substructured in unresolved filaments that fill ~0.1% of the volume.
    The Astrophysical Journal 12/2013; 779(1):43. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use the high spatial and spectral resolution of the PAWS CO(1-0) survey of the inner 9 kpc of the iconic spiral galaxy M51 to examine the effect of gas streaming motions on the star-forming properties of individual GMCs. We compare our view of gas flows in M51 -- which arise due to departures from axi-symmetry in the gravitational potential (i.e. the nuclear bar and spiral arms) -- with the global pattern of star formation as traced by Halpha and 24\mu m emission. We find that the dynamical environment of GMCs strongly affects their ability to form stars, in the sense that GMCs situated in regions with large streaming motions can be stabilized, while similarly massive GMCs in regions without streaming go on to efficiently form stars. We argue that this is the result of reduced surface pressure felt by clouds embedded in an ambient medium undergoing large streaming motions, which prevents collapse. Indeed, the variation in gas depletion time expected based on the observed streaming motions throughout the disk of M51 quantitatively agrees with the variation in observed gas depletion time scale. The example of M51 shows that streaming motions, triggered by gravitational instabilities in the form of bars and spiral arms, can alter the star formation law; this can explain the variation in gas depletion time among galaxies with different masses and morphologies. In particular, we can explain the long gas depletion times in spiral galaxies compared to dwarf galaxies and starbursts. We suggest that adding a dynamical pressure term to the canonical free-fall time produces a single star formation law that can be applied to all star-forming regions and galaxies, across cosmic time.
    The Astrophysical Journal 12/2013; 779:45. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the far infrared spectrum of NGC 1266, a S0 galaxy that contains a massive reservoir of highly excited molecular gas. Using the SPIRE-FTS, we detect the $^{12}$CO ladder up to J=(13-12), [C I] and [N II] lines, and also strong water lines more characteristic of UltraLuminous IR Galaxies (ULIRGs). The 12CO line emission is modeled with a combination of a low-velocity C-shock and a PDR. Shocks are required to produce the H2O and most of the high-J 12CO emission. Despite having an infrared luminosity thirty times less than a typical ULIRG, the spectral characteristics and physical conditions of the ISM of NGC 1266 closely resemble those of ULIRGs, which often harbor strong shocks and large-scale outflows.
    11/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 'Normal' galaxies observed at z>6, when the Universe was <1 billion years old, thus far show no evidence of the cold dust that accompanies star formation in the local Universe, where the dust-to-gas mass ratio is 1%. A prototypical example is 'Himiko' (z=6.6), which a mere 840 Myr after the Big Bang is forming stars at a rate of 30-100 Msun/yr, yielding a mass assembly time M^{star}/SFR 150x10^6 yr. Himiko is estimated to have a low fraction (2-3% of the Solar value) of elements heavier than helium (metallicity), and although its gas mass cannot be asserted at this time its dust-to-stellar mass ratio is constrained to be <0.05%. The local galaxy I Zw 18, with a metallicity 4% solar and forming stars less rapidly than Himiko but still vigorously for its mass (M^{star}/SFR 1.6x10^9 yr), is also very dust deficient and perhaps one of the best analogues of primitive galaxies accessible to detailed study. Here we report observations of dust emission from I Zw 18 from which we determine its dust mass to be 450-1800 Msun, yielding a dust-to-stellar mass ratio \approx 10^{-6}-10^{-5} and a dust-to-gas mass ratio 3.2-13x10^{-6}. If I Zw 18 is a reasonable analog of Himiko, then Himiko's dust mass is \approx 50,000 Msun, a factor of 100 below the current upper limit. These numbers are considerably uncertain, but if most high-z galaxies are more like Himiko than like the quasar host SDSS J114816.64+525150.3, then the prospects for detecting the gas and dust in them are much poorer than hitherto anticipated.
    10/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the correlation between CO and HI emission in 18 nearby galaxies from the CARMA Survey Toward IR-Bright Nearby Galaxies (STING) at sub-kpc and kpc scales. Our sample, spanning a wide range in stellar mass and metallicity, reveals evidence for a metallicity dependence of the HI column density measured in regions exhibiting CO emission. Such a dependence is predicted by the equilibrium model of McKee & Krumholz, which balances H_2 formation and dissociation. The observed HI column density is often smaller than predicted by the model, an effect we attribute to unresolved clumping, although values close to the model prediction are also seen. We do not observe HI column densities much larger than predicted, as might be expected were there a diffuse HI component that did not contribute to H_2 shielding. We also find that the H_2 column density inferred from CO correlates strongly with the stellar surface density, suggesting that the local supply of molecular gas is tightly regulated by the stellar disk.
    The Astrophysical Journal 09/2013; 777(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a comprehensive study of the velocity dispersion of the atomic (HI) and molecular (H2) gas components in the disks (R < R25) of a sample of 12 nearby spiral galaxies with moderate inclinations. Our analysis is based on sensitive high resolution data from the THINGS (atomic gas) and HERACLES (molecular gas) surveys. To obtain reliable measurements of the velocity dispersion, we stack regions several kilo-parsecs in size, after accounting for intrinsic velocity shifts due to galactic rotation and large-scale motions. We stack using various parameters: the galacto-centric distance, star formation rate surface density, HI surface density, H2 surface density, and total gas surface density. We fit single Gaussian components to the stacked spectra and measure median velocity dispersions for HI of 11.9 +/- 3.1 km/s and for H2 of 12.0 +/- 3.9 km/s. The CO velocity dispersions are thus, surprisingly, very similar to the corresponding ones of HI, with an average ratio of sigma(HI)/sigma(CO) = 1.0 +/- 0.2 irrespective of the stacking parameter. The measured CO velocity dispersions are significantly higher (factor 2) than the traditional picture of a cold molecular gas disk associated with star formation. The high dispersion implies an additional thick molecular gas disk (possibly as thick as the HI disk). Our finding is in agreement with recent sensitive measurements in individual edge-on and face-on galaxies and points towards the general existence of a thick disk of molecular gas, in addition to the well-known thin disk in nearby spiral galaxies.
    The Astronomical Journal 09/2013; 146(6). · 4.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The under-abundance of very massive galaxies in the Universe is frequently attributed to the effect of galactic winds. Although ionized galactic winds are readily observable, most of the expelled mass (that is, the total mass flowing out from the nuclear region) is likely to be in atomic and molecular phases that are cooler than the ionized phases. Expanding molecular shells observed in starburst systems such as NGC 253 (ref. 12) and M 82 (refs 13, 14) may facilitate the entrainment of molecular gas in the wind. Although shell properties are well constrained, determining the amount of outflowing gas emerging from such shells and the connection between this gas and the ionized wind requires spatial resolution better than 100 parsecs coupled with sensitivity to a wide range of spatial scales, a combination hitherto not available. Here we report observations of NGC 253, a nearby starburst galaxy (distance ∼ 3.4 megaparsecs) known to possess a wind, that trace the cool molecular wind at 50-parsec resolution. At this resolution, the extraplanar molecular gas closely tracks the Hα filaments, and it appears to be connected to expanding molecular shells located in the starburst region. These observations allow us to determine that the molecular outflow rate is greater than 3 solar masses per year and probably about 9 solar masses per year. This implies a ratio of mass-outflow rate to star-formation rate of at least 1, and probably ∼3, indicating that the starburst-driven wind limits the star-formation activity and the final stellar content.
    Nature 07/2013; 499(7459):450-3. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The under-abundance of very massive galaxies in the universe is frequently attributed to the effect of galactic winds. Although ionized galactic winds are readily observable most of the expelled mass is likely in cooler atomic and molecular phases. Expanding molecular shells observed in starburst systems such as NGC 253 and M 82 may facilitate the entrainment of molecular gas in the wind. While shell properties are well constrained, determining the amount of outflowing gas emerging from such shells and the connection between this gas and the ionized wind requires spatial resolution <100 pc coupled with sensitivity to a wide range of spatial scales, hitherto not available. Here we report observations of NGC 253, a nearby starburst galaxy (D~3.4 Mpc) known to possess a wind, which trace the cool molecular wind at 50 pc resolution. At this resolution the extraplanar molecular gas closely tracks the H{\alpha} filaments, and it appears connected to molecular expanding shells located in the starburst region. These observations allow us to directly measure the molecular outflow rate to be > 3 Msun/yr and likely ~9 Msun/yr. This implies a ratio of mass-outflow rate to star formation rate of at least {\eta}~1-3, establishing the importance of the starburst-driven wind in limiting the star formation activity and the final stellar content.
    07/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present ALMA observations of 30 Doradus -- the highest resolution view of molecular gas in an extragalactic star formation region to date (~0.4pc x 0.6pc). The 30Dor-10 cloud north of R136 was mapped in 12CO 2-1, 13CO 2-1, C18O 2-1, 1.3mm continuum, the H30alpha recombination line, and two H2CO 3-2 transitions. Most 12CO emission is associated with small filaments and clumps (<1pc, ~1000 Msun at the current resolution). Some clumps are associated with protostars, including "pillars of creation" photoablated by intense radiation from R136. Emission from molecular clouds is often analyzed by decomposition into approximately beam-sized clumps. Such clumps in 30 Doradus follow similar trends in size, linewidth, and surface density to Milky Way clumps. The 30 Doradus clumps have somewhat larger linewidths for a given size than predicted by Larson's scaling relation, consistent with pressure confinement. They extend to higher surface density at a given size and linewidth compared to clouds studied at 10pc resolution. These trends are also true of clumps in Galactic infrared-dark clouds; higher resolution observations of both environments are required. Consistency of clump masses calculated from dust continuum, CO, and the virial theorem reveals that the CO abundance in 30 Doradus clumps is not significantly different from the LMC mean, but the dust abundance may be reduced by ~2. There are no strong trends in clump properties with distance from R136; dense clumps are not strongly affected by the external radiation field, but there is a modest trend towards lower dense clump filling fraction deeper in the cloud.
    The Astrophysical Journal 07/2013; 774(1). · 6.73 Impact Factor

Publication Stats

3k Citations
518.79 Total Impact Points

Institutions

  • 2006–2014
    • National Radio Astronomy Observatory
      Charlottesville, Virginia, United States
    • University of Victoria
      Victoria, British Columbia, Canada
  • 2013
    • Max Planck Institute for Radio Astronomy
      Bonn, North Rhine-Westphalia, Germany
  • 2006–2012
    • Max Planck Institute for Astronomy
      Heidelburg, Baden-Württemberg, Germany
  • 2011
    • Nagoya University
      Nagoya, Aichi, Japan
  • 2010
    • Ecole Normale Supérieure de Paris
      Lutetia Parisorum, Île-de-France, France
  • 2001–2008
    • University of California, Berkeley
      • • Department of Astronomy
      • • Radio Astronomy Laboratory
      Berkeley, CA, United States
  • 2007
    • University of Maryland, College Park
      • Department of Astronomy
      College Park, MD, United States