A Diana Rus

University of Valencia, Valencia, Valencia, Spain

Are you A Diana Rus?

Claim your profile

Publications (3)11.77 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: This study assessed the role of xanthine oxidase in vascular ageing. A positive correlation between xanthine oxidase activity and age was found in human plasma. Similar results were found in rat plasma. Xanthine oxidase expression and activity in homogenates from the aortic wall were significantly higher in samples from old rats than in their young counterparts (p < 0.01). In rat skeletal muscle homogenates both xanthine oxidase expression and activity showed a similar age-related profile. Superoxide production by xanthine oxidase in aortic rings was higher in aged rats. Uric acid, the final product of xanthine oxidase has been proposed as a risk factor for coronary heart disease and an independent marker of worse prognosis in patients with moderate-to-severe chronic heart failure. These results give a possible explanation for this correlation and underscore the role of xanthine oxidase in ageing.
    Free Radical Research 12/2007; 41(11):1195-200. DOI:10.1080/10715760701481461 · 2.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: At the end of lactation the mammary gland undergoes involution, a process characterized by apoptosis of secretory cells and tissue remodelling. To gain insight into this process, we analysed the gene expression profile by oligonucleotide microarrays during lactation and after forced weaning. Up-regulation of inflammatory mediators and acute-phase response genes during weaning was found. Expression of IkappaBalpha (inhibitory kappaBalpha), a protein known to modulate NF-kappaB (nuclear factor-kappaB) nuclear translocation, was significantly up-regulated. On the other hand, there was a time-dependent degradation of IkappaBalpha protein levels in response to weaning, suggesting a role for NF-kappaB. Furthermore, we have demonstrated, using chromatin immunoprecipitation assays, binding of NF-kappaB to the NOS-2 (inducible nitric oxide synthase) promoter at the early onset of events triggered during weaning. The three isoforms of NOS are constitutively present in the lactating mammary gland; however, while NOS-2 mRNA and protein levels and, consequently, NO production are increased during weaning, NOS-3 protein levels are diminished. Western blot analyses have demonstrated that protein nitration is increased in the mammary gland during weaning, but this is limited to a few specific tyrosine-nitrated proteins. Interestingly, inhibition of GSH synthesis at the peak of lactation partially mimics these findings, highlighting the role of NO production and GSH depletion during involution.
    Biochemical Journal 12/2005; 391(Pt 3):581-8. DOI:10.1042/BJ20050507 · 4.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the lactating mammary gland, weaning produces mitochondrial cytochrome c release and nuclear DNA fragmentation, as determined by gel electrophoresis. This is followed by a significant decrease in lactation. Weaning for 2 h produces an early induction of the tumour suppressor/transcription factor p53, whereas the oncoprotein c-Jun and c-Jun N-terminal kinase are elevated after 24 h of weaning when compared with controls. The expression of p21(cip1) and p27(kip1), cyclin-dependent kinase inhibitors, was significantly higher in weaned rats when compared with control lactating rats. All the changes mentioned above also happen in the lactating mammary gland when propargylglycine, an inhibitor of the liver trans-sulphuration pathway, is administered. This effect is partially reversed by N -acetylcysteine administration. The administration of buthionine sulphoximine, an irreversible inhibitor of gamma-glutamylcysteine synthetase, to lactating rats produces a decrease in GSH levels and changes in protein concentrations and gene transcripts similar to those in rats with impaired trans-sulphuration pathway. These data suggest that the inter-tissue flux of GSH is an important mechanism of L-cysteine delivery to the lactating mammary gland and emphasize the importance of this physiological event in maintaining the gene expression required to sustain lactation.
    Biochemical Journal 09/2003; 373(Pt 3):825-34. DOI:10.1042/BJ20030387 · 4.40 Impact Factor