Su Haeng Sung

Ewha Womans University, Sŏul, Seoul, South Korea

Are you Su Haeng Sung?

Claim your profile

Publications (5)50.4 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Sestrins (Sesns) protect cells from oxidative stress. The mechanism underlying the antioxidant effect of Sesns has remained unknown, however. The Nrf2-Keap1 pathway provides cellular defense against oxidative stress by controlling the expression of antioxidant enzymes. We now show that Sesn1 and Sesn2 interact with the Nrf2 suppressor Keap1, the autophagy substrate p62, and the ubiquitin ligase Rbx1 and that the antioxidant function of Sesns is mediated through activation of Nrf2 in a manner reliant on p62-dependent autophagic degradation of Keap1. Sesn2 was upregulated in the liver of mice subjected to fasting or subsequent refeeding with a high-carbohydrate, fat-free diet, whereas only refeeding promoted Keap1 degradation and Nrf2 activation, because only refeeding induced p62 expression. Ablation of Sesn2 blocked Keap1 degradation and Nrf2 activation induced by refeeding and thereby increased the susceptibility of the liver to oxidative damage resulting from the acute stimulation of lipogenesis associated with refeeding.
    Cell metabolism 12/2012; · 17.35 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Abstract Aims: To define the mechanisms underlying pyrazole-induced oxidative stress and the protective role of peroxiredoxins (Prxs) and sulfiredoxin (Srx) against such stress. Results: Pyrazole increased Srx expression in the liver of mice in a nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent manner and induced Srx translocation from the cytosol to the endoplasmic reticulum (ER) and mitochondria. Pyrazole also induced the expression of CYP2E1, a primary reactive oxygen species (ROS) source for ethanol-induced liver injury, in ER and mitochondria. However, increased CYP2E1 levels only partially accounted for the pyrazole-mediated induction of Srx, prompting the investigation of CYP2E1-independent ROS generation downstream of pyrazole. Indeed, pyrazole increased ER stress, which is known to elevate mitochondrial ROS. In addition, pyrazole up-regulated CYP2E1 to a greater extent in mitochondria than in ER. Accordingly, among Prxs I to IV, PrxIII, which is localized to mitochondria, was preferentially hyperoxidized in the liver of pyrazole-treated mice. Pyrazole-induced oxidative damage to the liver was greater in PrxIII(-/-) mice than in wild-type mice. Such damage was also increased in Srx(-/-) mice treated with pyrazole, underscoring the role of Srx as the guardian of PrxIII. Innovation: The roles of Prxs, Srx, and ER stress have not been previously studied in relation to pyrazole toxicity. Conclusion: The concerted action of PrxIII and Srx is important for protection against pyrazole-induced oxidative stress arising from the convergent induction of CYP2E1-derived and ER stress-derived ROS in mitochondria. Antioxid. Redox Signal. 17, 1351-1361.
    Antioxidants & Redox Signaling 04/2012; 17(10):1351-61. · 8.20 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Sulfiredoxin (Srx) is an enzyme that catalyzes the reduction of cysteine sulfinic acid of hyperoxidized peroxiredoxins (Prxs). Having high affinity toward H2O2, 2-Cys Prxs can efficiently reduce H2O2 at low concentration. We previously showed that Prx I is hyperoxidized at a rate of 0.072% per turnover even in the presence of low steady-state levels of H2O2. Here we examine the novel role of Srx in cells exposed to low steady-state levels of H2O2, which can be achieved by using glucose oxidase. Exposure of low steady-state levels of H2O2 (10-20 μm) to A549 or wild-type mouse embryonic fibroblast (MEF) cells does not lead to any significant change in oxidative injury because of the maintenance of balance between H2O2 production and elimination. In contrast, loss-of-function studies using Srx-depleted A549 and Srx-/- MEF cells demonstrate a dramatic increase in extra- and intracellular H2O2, sulfinic 2-Cys Prxs, and apoptosis. Concomitant with hyperoxidation of mitochondrial Prx III, Srx-depleted cells show an activation of mitochondria-mediated apoptotic pathways including mitochondria membrane potential collapse, cytochrome c release, and caspase activation. Furthermore, adenoviral re-expression of Srx in Srx-depleted A549 or Srx-/- MEF cells promotes the reactivation of sulfinic 2-Cys Prxs and results in cellular resistance to apoptosis, with enhanced removal of H2O2. These results indicate that Srx functions as a novel component to maintain the balance between H2O2 production and elimination and then protects cells from apoptosis even in the presence of low steady-state levels of H2O2.
    Journal of Biological Chemistry 11/2011; 287(1):81-9. · 4.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Peroxiredoxins (Prxs) are peroxidases that catalyze the reduction of reactive oxygen species (ROS). The active site cysteine residue of members of the 2-Cys Prx subgroup (Prx I to IV) of Prxs is hyperoxidized to cysteine sulfinic acid (Cys-SO(2) ) during catalysis with concomitant loss of peroxidase activity. Reactivation of the hyperoxidized Prx is catalyzed by sulfiredoxin (Srx). Ethanol consumption induces the accumulation of cytochrome P450 2E1 (CYP2E1), a major contributor to ethanol-induced ROS production in the liver. We now show that chronic ethanol feeding markedly increased the expression of Srx in the liver of mice in a largely Nrf2-dependent manner. Among Prx I to IV, only Prx I was found to be hyperoxidized in the liver of ethanol-fed wildtype mice, and the level of Prx I-SO(2) increased to ≈30% to 50% of total Prx I in the liver of ethanol-fed Srx(-/-) mice. This result suggests that Prx I is the most active 2-Cys Prx in elimination of ROS from the liver of ethanol-fed mice and that, despite the up-regulation of Srx expression by ethanol, the capacity of Srx is not sufficient to counteract the hyperoxidation of Prx I that occurs during ROS reduction. A protease protection assay revealed that a large fraction of Prx I is located together with CYP2E1 at the cytosolic side of the endoplasmic reticulum membrane. The selective role of Prx I in ROS removal is thus likely attributable to the proximity of Prx I and CYP2E1. CONCLUSION: The pivotal functions of Srx and Prx I in protection of the liver in ethanol-fed mice was evident from the severe oxidative damage observed in mice lacking either Srx or Prx I.
    Hepatology 12/2010; 53(3):945-53. · 12.00 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The cysteine residue at the active site of peroxiredoxin (Prx) I, Prx II, or Prx III is reversibly hyperoxidized to cysteine sulfinic acid, with concomitant loss of peroxidase activity, during normal catalysis. Sulfiredoxin (Srx) is the enzyme responsible for reversing this hyperoxidation. We now show that the expression of Srx at both the mRNA and protein levels is increased markedly in the lungs of mice exposed to hyperoxia. This hyperoxia-induced expression of Srx was not evident in mice deficient in the transcription factor Nrf2, indicating an essential role for an Nrf2 signaling pathway in this effect. Hyperoxia also elicited the accumulation of the sulfinic form of the mitochondrial enzyme Prx III, but not that of the cytosolic enzymes Prx I or Prx II, in lung tissue. This selective hyperoxidation of Prx III is likely due either to mitochondria being the major site of the hyperoxia-induced production of reactive oxygen species or to the translocation of Srx from the cytosol into mitochondria being rate limiting for the reduction of sulfinic Prx III. Hyperoxia induced the degradation of Prx III in Nrf2-deficient mice but not in wild-type animals, suggesting that, in the absence of a sufficient amount of Srx, sulfinic Prx III is converted to a form that is susceptible to proteolysis.
    Antioxidants & Redox Signaling 01/2009; 11(5):937-48. · 8.20 Impact Factor