Steven Marchenko

University of California, Irvine, Irvine, CA, United States

Are you Steven Marchenko?

Claim your profile

Publications (6)3.26 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a novel design and separation strategy for lateral flow-through separation of cells/particles in microfluidics by dual frequency coupled dielectrophoresis (DEP) forces enabled by vertical interdigitated electrodes embedded in the channel sidewalls. Unlike field-flow-fractionation-DEP separations in microfluidics, which utilize planar electrodes on the microchannel floor to generate a DEP force to balance the gravitational force and separate objects at different height locations, lateral separation is enabled by sidewall interdigitated electrodes that are used to generate non-uniform electric fields and balanced DEP forces along the width of the microchannel. In the current design, two separate AC electric fields are applied to two sets of independent interdigitated electrode arrays fabricated in the sidewalls of the microchannel to generate differential DEP forces that act on the cells/particles flowing through. Individual particles (cells or beads) will experience DEP forces differently due to the difference in their dielectric properties. The balance of the differential DEP forces from the electrode arrays will position dissimilar particles at distinct equilibrium planes across the width of the channel. When coupled with fluid flow, this results in lateral separation along the width of the microchannel and the separated particles can thus be automatically directed into branched channel outlets leading to different reservoirs for downstream processing. In this paper, we present the design and analysis of lateral separation enabled by dual frequency coupled DEP, and cell/bead and cell/cell separations are demonstrated with this lateral separation strategy. With vertical interdigitated electrodes on the sidewall, the height of the microchannel can be increased without losing the electric field strength in contrast to other multiple frequency DEP devices with planar electrodes. As a result, populations of cells can be separated simultaneously instead of one by one to enable high-throughput sorting microfluidic devices.
    Electrophoresis 03/2009; 30(5):782-91. · 3.26 Impact Factor
  • Source
    Steven Marchenko, Lisa Flanagan
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to manipulate human neural stem/precursor cells (hNSPCs) in vitro provides a means to investigate their utility as cell transplants for therapeutic purposes as well as to explore many fundamental processes of human neural development and pathology. This protocol presents a simple method of culturing and passaging hNSPCs in hopes of standardizing this technique and increasing reproducibility of human stem cell research. The hNSPCs we use were isolated from cadaveric postnatal brain cortices by the National Human Neural Stem Cell Resource and grown as adherent cultures on flasks coated with fibronectin (Palmer et al., 2001; Schwartz et al., 2003). We culture our hNSPCs in a DMEM:F12 serum-free media supplemented with EGF, FGF, and PDGF and passage them 1:2 approximately every seven days. Using these conditions, the majority of the cells in the culture maintain a bipolar morphology and express markers of undifferentiated neural stem cells (such as nestin and sox2).
    Journal of Visualized Experiments 02/2007;
  • Source
    Steven Marchenko, Lisa Flanagan
    [Show abstract] [Hide abstract]
    ABSTRACT: Knowledge of the exact number of viable cells in a given volume of a cell suspension is required for many routine tissue culture manipulations, such as plating cells for immunocytochemistry or for cell transfections. This protocol describes a straightforward and fast method for differentiating between live and dead cells and quantifying the cell concentration and total cell number using a hemacytometer. This procedure first requires detaching cells from a growth surface and resuspending them in media. Next, the cells are diluted in a solution of Trypan blue (ideally to a concentration that will give 20-50 cells per quadrant) and placed in the hemacytometer. Finally, averaging the counts of viable cells in several randomly selected quadrants, dividing the average by the volume of one 1 mm(2) quadrant (0.1 microl) and multiplying by the dilution factor gives the number of cells per l. Multiplying this cell concentration by the total volume in microl gives the total cell number. This protocol describes counting human neural stem/precursor cells (hNSPCs), but can also be used for many other cell types.
    Journal of Visualized Experiments 02/2007;
  • Source
    Steven Marchenko, Lisa Flanagan
    [Show abstract] [Hide abstract]
    ABSTRACT: Transfection of primary mammalian neural cells, such as human neural stem/precursor cells (hNSPCs), with commonly used cationic lipid transfection reagents has often resulted in poor cell viability and low transfection efficiency. Other mechanical methods of introducing a gene of interest, such as a "gene gun" or microinjection, are also limited by poor cell viability and low numbers of transfected cells. The strategy of using viral constructs to introduce an exogenous gene into primary cells has been constrained by both the amount of time and labor required to create viral vectors and potential safety concerns. We describe here a step-by-step protocol for transfecting hNSPCs using Amaxa's Nucleofector device and technology with electrical current parameters and buffer solutions specifically optimized for transfecting neural stem cells. Using this protocol, we have achieved initial transfection efficiencies of ~35% and ~70% after stable transfection. The protocol entails combining a high number of hNSPCs with the DNA to be transfected in the appropriate buffer followed by electroporation with the Nucleofector device.
    Journal of Visualized Experiments 02/2007;
  • Source
    Steven Marchenko, Lisa Flanagan
    [Show abstract] [Hide abstract]
    ABSTRACT: Immunocytochemistry is a very powerful and fairly straightforward method for determining the presence, subcellular localization, and relative abundance of an antigen of interest, most commonly a protein, in cultured cells. This protocol presents an easy-to-follow series of steps that will enable researchers to conserve primary and secondary antibodies while getting high quality, reproducible qualitative and quantitative data out of their staining. There are two aspects of this protocol that help to conserve the volume of antibody necessary for staining. For one, the cells are grown on small, circular coverslips that are placed in wells of a tissue culture plate. After fixation, the cells on coverslips can be removed from the wells of the plate. For antibody staining, the coverslip with cells is inverted onto a small drop of antibody solution on parafilm and is covered with a second piece of parafilm to prevent drying. Using this method, only approximately 25 microl of antibody solution is needed for each coverslip (or sample) to be stained. This protocol describes immunostaining of human neural stem/precursor cells (hNSPCs), but can be used for many other cell types.
    Journal of Visualized Experiments 02/2007;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a process to fabricate vertical electrodes in the side walls of the microchannel. With appropriate electrodes design, DEP force along the lateral direction of the channel can be generated so that one can position participates along the width dimension of the channel. The effect of different electrode configurations on the efficacy of generating non-uniform electric field distribution has been studied by FEM simulation with CFD-ACE. Electrodes with various length ratios and interdigited electrodes have been designed and studied on the generation of non-uniformity of the electric field. Compared to electrodes with different length ratios, side-wall interdigited electrodes provide more consistent direction of DEP force. Experiments on the manipulation of polystyrene microbeads and HEK293 cells with DEP have been demonstrated to verify the performance of the design. The particles/cells can be focused in the middle of the channel, trapped on the side walls, and sorted to different outlets by the flow
    01/2006;