Sishuo Cao

China Agricultural University, Beijing, Beijing Shi, China

Are you Sishuo Cao?

Claim your profile

Publications (12)32.85 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacillus thuringiensis insecticidal toxin (Bt) rice will be commercialized as a main food source. Traditional safety assessments on genetically modified products pay little attention on gastrointestinal (GI) health. More data about GI health of Bt rice must be provided to dispel public' doubts about the potential effects on human health. We constructed an improved safety assessment animal model using a basic subchronic toxicity experiment, measuring a range of parameters including microflora composition, intestinal permeability, epithelial structure, fecal enzymes, bacterial activity, and intestinal immunity. Significant differences were found between rice-fed groups and AIN93G-fed control groups in several parameters, whereas no differences were observed between genetically modified and non-genetically modified groups. No adverse effects were found on GI health resulting from genetically modified T2A-1 rice. In conclusion, this study may offer a systematic safety assessment model for GM material with respect to the effects on GI health.
    Scientific Reports 06/2013; 3:1962. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genetically-modified (GM) soybean 3Ø5423 × 40-3-2 expresses siRNA for the fatty acid desaturase-2 enzyme which results in higher concentrations of oleic acid (18:1) relative to linoleic acid (18:2) compared with non-GM soybeans. It also expresses the CP4 EPSPS protein for tolerance to glyphosate. In this study, three different dietary concentrations (7.5%, 15% and 30% wt/wt) of 3Ø5423 × 40-3-2 or non-GM soybeans were fed to Sprague-Dawley rats for 90 days during which in-life nutritional and growth performance variables were evaluated followed by analysis of standard clinical chemistry, hematology and organ variables. Compared with rats fed the non-GM control diet, some statistically significant differences were observed in rats fed the 3Ø5423 × 40-3-2 diet. However the differences were not considered treatment-related and commonly fell within the normal ranges of the control group consuming the commercial diet. These results demonstrated that the GM soybean 3Ø5423 × 40-3-2 is as safe as non-GM soybeans.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 07/2012; 50(9):3256-63. · 2.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dehydration-responsive element-binding (DREB) proteins are important transcription factors in plant responses and signal transduction. The DREB proteins can improve the drought and salt tolerance of plants, which provides an excellent opportunity to develop stress-tolerant genetically modified crops in the future. In the present study, a novel TaDREB4 gene (GenBank Accession No: AY781355.1) from Triticum aestivum was amplified by PCR (polymerase chain reaction), and the recombinant plasmid pET 30a(+)/TaDREB4 was successfully constructed. The fusion protein was induced by IPTG (isopropyl β-d-1-thiogalactopyranoside) and purified by the HisPrep™ FF 16/10 Column. The purity of the final purified TaDREB4 protein was 93.0%.Bioinformatic analysis and digestive stability tests were conducted to assess the allergenicity of the TaDREB4 protein, and acute toxicity tests were conducted in mice by oral administration of the TaDREB4 protein (5000mg/kg BW). The results indicated that there was almost no similarity between the TaDREB4 protein and known allergens, and the protein was immediately degraded in simulated gastric and intestinal fluid within 15 s. In addition, no observed adverse effects were found in mice after 14days. The results preliminary revealed that the protein is safe for human based on the current experiment.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 06/2012; 50(11):4077-84. · 2.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cry1Ac-M gene, coding one of Bacillus thuringiensis (Bt) crystal proteins, was introduced into maize H99 × Hi IIB genome to produce insect-resistant GM maize BT-38. The food safety assessment of the BT-38 maize was conducted in Sprague-Dawley rats by a 90-days feeding study. We incorporated maize grains from BT-38 and H99 × Hi IIB into rodent diets at three concentrations (12.5%, 25%, 50%) and administered to Sprague-Dawley rats (n=10/sex/group) for 90 days. A commercialized rodent diet was fed to an additional group as control group. Body weight, feed consumption and toxicological response variables were measured, and gross as well as microscopic pathology were examined. Moreover, detection of residual Cry1Ac-M protein in the serum of rats fed with GM maize was conducted. No death or adverse effects were observed in the current feeding study. No adverse differences in the values of the response variables were observed between rats that consumed diets containing GM maize BT-38 and non-GM maize H99 × Hi IIB. No detectable Cry1Ac-M protein was found in the serum of rats after feeding diets containing GM maize for 3 months. The results demonstrated that BT-38 maize is as safe as conventional non-GM maize.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 06/2012; 50(9):3215-21. · 2.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: With the development of genetically modified crops, there has been a growing interest in available approaches to assess the potential allergenicity of novel gene products. We were not sure whether Cry1C could induce allergy. We examined the protein with three other proteins to determine the potential allergenicity of Cry1C protein from genetically modified rice. Female Brown Norway (BN) rats received 0.1 mg peanut agglutinin (PNA), 1mg potato acid phosphatase (PAP), 1mg ovalbumin (OVA) or 5 mg purified Cry1C protein dissolved in 1 mL water by daily gavage for 42 days to test potential allergenicity. Ten days after the last gavage, rats were orally challenged with antigens, and physiologic and immunologic responses were studied. In contrast to sensitization with PNA, PAP and OVA Cry1C protein did not induce antigen-specific IgG2a in BN rats. Cytokine expression, serum IgE and histamine levels and the number of eosinophils and mast cells in the blood of Cry1C group rats were comparable to the control group rats, which were treated with water alone. As Cry1C did not show any allergenicity, we make the following conclusion that the protein could be safety used in rice or other plants.
    Regulatory Toxicology and Pharmacology 04/2012; 63(2):181-7. · 2.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacillus thuringiensis rice is facing commercialization as the main food source in the near future. The unintended effects of genetically modified (GM) organisms are the most important barriers to their promotion. We aimed to establish a new in vivo evaluation model for genetically modified foods by using metabonomics and bacterial profile approaches. T1c-19 rice flour or its transgenic parent MH63 was used at 70% wt/wt to produce diets that were fed to rats for ∼ 90 days. Urine metabolite changes were detected using (1)H NMR. Denaturing gradient gel electrophoresis and real-time polymerase chain reaction (RT-PCR) were used to detect the bacterial profiles between the two groups. The metabonomics was analyzed for metabolite changes in rat urine, when compared with the non-GM rice group, where rats were fed a GM rice diet. Several metabolites correlated with rat age and sex but not with GM rice diet. Significant biological differences were not identified between the GM rice diet and the non-GM rice diet. The bacteria related to rat urine metabolites were also discussed. The results from metabonomics and bacterial profile analyses were comparable with the results attained using the traditional method. Because metabonomics and bacterial profiling offer noninvasive, dynamic approaches for monitoring food safety, they provide a novel process for assessing the safety of GM foods.
    International Union of Biochemistry and Molecular Biology Life 01/2012; 64(3):242-50. · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Grapefruit seed extract (GSE), which has powerful anti-fungal activity, can induce apoptosis in S. cerevisiae. The yeast cells underwent apoptosis as determined by testing for apoptotic markers of DNA cleavage and typical chromatin condensation by Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling (TUNEL) and 4,6'-diaminidino-2-phenylindole (DAPI) staining and electron microscopy. The changes of ΔΨmt (mitochondrial transmembrane potential) and ROS (reactive oxygen species) indicated that the mitochondria took part in the apoptotic process. Changes in this process detected by metabonomics and proteomics revealed that the yeast cells tenaciously resisted adversity. Proteins related to redox, cellular structure, membrane, energy and DNA repair were significantly increased. In this study, the relative changes in the levels of proteins and metabolites showed the tenacious resistance of yeast cells. However, GSE induced apoptosis in the yeast cells by destruction of the mitochondrial 60 S ribosomal protein, L14-A, and prevented the conversion of pantothenic acid to coenzyme A (CoA). The relationship between the proteins and metabolites was analyzed by orthogonal projections to latent structures (OPLS). We found that the changes of the metabolites and the protein changes had relevant consistency.
    PLoS ONE 01/2012; 7(3):e32943. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rice is one of the most important staple foods in the world. The Cry2A gene was inserted into the rice genome to help the plant combat insects. As the unintended effects of the genetically modified (GM) organisms are the most important barriers to the promotion of GM organisms, we have carried out a useful exploration to establish a new in vivo evaluation model for genetically modified foods by metabonomics methods. In this study, the rats were fed for 90 days with the GM and NON-GM rice diets. The changes in metabolites of the urine were detected using (1)H-NMR. The metabonomics were analyzed to see whether the GM rice can induce the metabolite changes in the rats' urine when compared with the NON-GM rice group. The multivariate analysis and ANOVA were used to determine the differences and the significance of differences respectively, and eventually we concluded that these differences did not have a biological significance. The conclusion of the metabonomics was comparable with that from the traditional method. As a non-invasive and dynamic monitoring method, metabonomics will be a new way of assessing the food safety of GM foods.
    Molecular BioSystems 01/2011; 7(7):2304-10. · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Cry1C protein produced in Escherichia coli was used for in vitro evaluation and animal studies to support the safety assessment of GM food or feed products containing the Cry1C protein. The Cry1C protein does not have any sequence homology with known allergens or toxins. Although the Cry1C protein was heat stable it was rapidly degraded in vitro with simulated gastric or intestinal fluids. It did not cause adverse effects in mice as administered by gavage at a high level dosage of 5 g (Cry1C protein)/kg body weight. The mutagenicity of this protein was evaluated according to the national standards of People's Republic of China (PR China) for a new food resource. In mutagenic tests, the Cry1C protein caused<4 micronucleated cells per 1000 cells, <16 sperm abnormalities per 1000 cells and was not associated with any increased mutations in the Ames test. Taken together, these data indicate that the Cry1C protein is not a potential allergen or toxin.
    Regulatory Toxicology and Pharmacology 12/2010; 58(3):474-81. · 2.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cry1ab/ac gene was fused by both the cry1ab gene (GenBank Accession No. X54939) and the cry1ac gene (GenBank Accession No. Y09787), which was widely used in genetically modified (GM) rice, cotton, maize and so on. In order to support the safety assessment of GM food or feed products containing Cry1Ab/Ac protein, sufficient quantities of Cry1Ab/Ac protein were produced in Escherichia coli for in vitro evaluation and animal studies. The Cry1Ab/Ac protein does not possess the characteristics associated with food toxins or allergens, i.e., it has no sequence homology with any known allergens or toxins, and no N-glycosylation sites, can be rapidly degraded in gastric and intestinal fluids, and is devoid of adverse effects in mice by gavage at a high dose level of 5g (Cry1Ab/Ac protein)/kg body weight. In conclusion, there is a reasonable certainty of no harm resulting from the inclusion of the Cry1Ab/Ac protein in human food or animal feed.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 04/2009; 47(7):1459-65. · 2.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: The Cry toxins are already a useful alternative or supplement to synthetic chemical pesticide application in commercial agriculture and forest management.RESULTS: The Cry1ab/ac gene from Bacillus thuringiensis was cloned from the genome of genetically modified rice by polymerase chain reaction (PCR). Owing to the large number of Escherichia coli low-usage codons in the Cry1ab/ac gene, the first 20 codons were optimised by PCR to improve the expression of the Cry1ab/ac gene in E. coli. The Cry1Ab/Ac protein was highly expressed in E. coli as inclusion bodies that could be dissolved in 8 mol L−1 urea and purified on a His Trap™ FF crude column under denaturing conditions. The purified Cry1Ab/Ac protein was dialysed in refolding buffers to obtain a soluble and biologically active protein. To achieve better biological activity, the His-tag was digested from the Cry1Ab/Ac protein with enterokinase, and the Cry1Ab/Ac protein was further purified by gel filtration on a fast performance liquid chromatography Superdex 75 HR 10/30 column using an AKTA purifier. The identity of the purified Cry1Ab/Ac protein sequence was confirmed by western blot and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry. The final purified Cry1Ab/Ac protein was 99.2% pure and retained its biological activity, as determined in a growth inhibition assay of Chilo suppressalis.CONCLUSION: The purified Cry1Ab/Ac protein could be used to evaluate the food safety of transgenic plants containing the Cry1ab/ac gene and to produce antibodies for immune-based methods employed in the detection of genetically modified organisms containing the Cry1ab or Cry1ac gene. It might also serve as a new biological insecticide to reduce the use of broad-spectrum insecticides. Copyright © 2009 Society of Chemical Industry
    Journal of the Science of Food and Agriculture 02/2009; 89(5):796 - 801. · 1.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel common primer multiplex PCR (CP-M-PCR) was applied to detect four kinds of meats (chicken, cattle, pig and horse) as raw materials. A common adapter was designed in the 5′-end of species-specific reverse primers which matched with the species-specific DNA sequences for each species and also used as the common primer (CP). CP-M-PCR primers were designed to uncover different length fragments of 239, 292, 412, and 451 bp from chicken, cattle, pig and horse meats, respectively. The bands of specific DNA fragments amplified by CP-M-PCR method still appeared until the concentration of species-specific primers diluted to 0.015 pmol and primer sensitivity was increased by 100 times compared with conventional multiplex PCR without CP. CP-M-PCR detection limit of the DNA samples was 0.1 ng (36.4 copies) for single kind of meat as well as four kinds of meats. CP-M-PCR method simplified the PCR reaction system and conquered the disparate amplified efficiency from different primers. The CP-M-PCR method could be widely applied in practical detection for simultaneous identification of other meat species and their products.
    Food Control. 01/2009;