Are you S A van Luxemburg-Heys?

Claim your profile

Publications (3)29.36 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Donor lymphocyte infusion (DLI) into patients with a relapse of their leukemia or multiple myeloma after allogeneic stem cell transplantation (alloSCT) has been shown to be a successful treatment approach. The hematopoiesis-restricted minor histocompatibility antigens (mHAgs) HA-1 or HA-2 expressed on malignant cells of the recipient may serve as target antigens for alloreactive donor T cells. Recently we treated three mHAg HA-1- and/or HA-2-positive patients with a relapse of their disease after alloSCT with DLI from their mHAg HA-1- and/or HA-2-negative donors. Using HLA-A2HA-1 and HA-2 peptide tetrameric complexes we showed the emergence of HA-1- and HA-2-specific CD8(+) T cells in the blood of the recipients 5-7 weeks after DLI. The appearance of these tetramer-positive cells was followed immediately by a complete remission of the disease and restoration of 100% donor chimerism in each of the patients. Furthermore, cloned tetramer-positive T cells isolated during the clinical response specifically recognized HA-1 and HA-2 expressing malignant progenitor cells of the recipient and inhibited the growth of leukemic precursor cells in vitro. Thus, HA-1- and HA-2-specific cytotoxic T lymphocytes emerging in the blood of patients after DLI demonstrate graft-versus-leukemia or myeloma reactivity resulting in a durable remission. This finding implies that in vitro generated HA-1- and HA-2-specific cytotoxic T lymphocytes could be used as adoptive immunotherapy to treat hematological malignancies relapsing after alloSCT.
    Proceedings of the National Academy of Sciences 04/2003; 100(5):2742-7. DOI:10.1073/pnas.0530192100 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nine patients with leukemic B-lymphoproliferative diseases (B-LPD) were evaluated for development of in vitro recombinant interleukin-2 (rIL-2)-activated killer (LAK) cells. B-cell cultures were established from peripheral blood mononuclear cells (PBMNCs) containing 63% +/- 29% malignant cells. Short-term cultures were tested after 5-day activation with 500 U rIL-2/mL. Long-term cultures were maintained for 4 to 6 weeks by weekly addition of 500 U rIL-2 and autologous irradiated feeder cells. In the first week, the cells decreased considerably in the long-term cultures but thereafter cells proliferated (mainly T cells) on the average 300-fold (range 30- to 1,000-fold). In the short-term cultures, there was a 36% reduction of malignant B cells. In long-term cultures, B cells were reduced from 63% to 8%; three cultures still contained greater than 15% B cells. The CD16-positive cell percentage was comparable in both types of cultures and ranged from 2% to 17%. Effector cells lysing the natural killer (NK)-sensitive cell line K562 could be induced in all patients. Except in patients with chronic lymphocytic leukemia (CLL) and high malignant cell numbers, NK activity was already restored after 5 days. Optimal NK activity was obtained after 1.5 to 2.5 weeks. LAK cells killing NK-resistant lymphoma cell lines showed optimal activity after 2 to 3 weeks of culture. However, LAK cells killing greater than 10% of autologous malignant cells were obtained in only one third of the patients. The discrepancy between strong cytolytic activity against the NK-sensitive (K562) target cells obtained in all patients and the cytotoxic activity against NK-resistant cell lines contrasts with the poor development of LAK cells against autologous tumor cells. This discrepancy does not appear to be explained by soluble inhibitory factors released during the tumor cultures, as allogeneic LAK cells were not inhibited by supernatants from patients' cultures. Further investigations are warranted to reveal cell-mediated inhibition by tumor cells or suppressor cells.
    Blood 12/1989; 74(7):2464-70. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although it has been demonstrated that lymphokine-activated killer (LAK) cells kill tumor cells in a selective way without being toxic to a variety of normal cells, contradictory results exist about the possible toxicity of natural killer (NK) and LAK cells for hematopoietic progenitor cells. Therefore, the cytolytic activity and growth inhibitory effects of LAK cells on normal bone marrow progenitor cells and the ability of LAK cells to eliminate neoplastic hematopoietic cells from populations of bone marrow cells in vitro was studied. The results of these experiments show the following: (1) LAK cells have little cytolytic activity against normal bone marrow cells; (2) normal bone marrow cells fail to cold target compete for the killing of the hematopoietic tumor cell lines K562 and HL60 or freshly frozen acute myelocytic leukemia (AML) blast cells by LAK cells; (3) LAK cells inhibit the growth of K562 and HL60 to more than 90% in clonogenic assays; (4) LAK cells have no inhibitory effect on hematopoietic progenitor growth in CFU-GM (colony-forming unit-granulocytes, macrophages), CFU-E (colony-forming unit-erythrocytes), BFU-E (burst-forming units-erythrocytes), or CFU-GEMM (colony-forming unit-granulocytes, erythrocytes, macrophages, megakaryocytes) assays. These results indicate that LAK cells have low toxicity for normal bone marrow and that LAK activity against tumor cells is not adversely affected by the presence of normal bone marrow cells. The differences in cytolysis and growth inhibition of neoplastic hematopoietic cells and hematopoietic progenitor cells by LAK cells in vitro could create a therapeutic index that might allow the use of LAK cells for cleansing of the autologous bone marrow graft and for adjuvant therapy in combination with autologous bone marrow transplantation without compromising the reconstitution of the bone marrow in the host.
    Blood 08/1989; 74(1):354-60. · 9.78 Impact Factor