Sara Lanza-Silveri

The Catholic University of America, Washington, Washington, D.C., United States

Are you Sara Lanza-Silveri?

Claim your profile

Publications (3)5.36 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Base excision repair plays a key role in the removing of DNA damage from exposure to endogenous and exogenous carcinogens. The BER pathway removes alterations of a single oxidized, reduced or methylated base. Recently some studies have explored the association between risk for cutaneous melanoma and non-synonymous single-nucleotide polymorphisms (nsSNPs) in DNA-repair genes, although with contradictory results. We hypothesized that common nsSNPs of BER genes, specifically ADPRT rs1136410, XRCC1 rs25487, rs25489, rs1799782, APEX1 rs1130409, OGG1 rs1052133, LIG3 rs3136025 and MUTYH rs3219466, may contribute to risk of melanoma. The aim of this study is to investigate whether or not a correlation between these nsSNPs and melanoma risk and/or aggressiveness is present. 167 melanoma patients and 186 healthy control subjects were analysed. By multivariate statistical analysis no association was found between nsSNP and melanoma aggressiveness, while only the two XRCC1 (rs25487 and rs25489) nsSNPs showed a strong correlation (p<0.001) with melanoma risk. To our knowledge this is the first study reporting an association between BER nsSNPs and melanoma risk in Central-South Italian individuals. Our findings, if confirmed in larger population studies, will allow the inclusion of these XRCC1 nsSNPs in a screening panel for those individuals at higher risk for melanoma.
    Clinica chimica acta; international journal of clinical chemistry 06/2012; 413(19-20):1519-24. DOI:10.1016/j.cca.2012.06.013 · 2.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MUTYH glycosylase recognizes the 8-oxoG:A mismatch and is able to excise the adenine base using proofreading mechanisms. Some papers have reported a strong association between cancer development or aggressiveness and MUTYH gene mutations. The aim of this study was to find a possible association between the most frequent MUTYH mutations and melanoma in the context of a case-control pilot study. One hundred ninety-five melanoma patients and 195 healthy controls were matched for sex and age. Clinical and laboratory data were collected in a specific database and all individuals were analyzed for MUTYH mutations by high-resolution melting and direct sequencing techniques. Men and women had significantly different distributions of tumor sites and phototypes. No significant associations were observed between the Y165C, G382D and V479F MUTYH mutations and risk of melanoma development or aggressiveness. Our preliminary findings therefore do not confirm a role for MUTYH gene mutations in the melanoma risk. Further studies are necessary for the assessment of MUTYH not only in melanoma but also other cancer types with the same embryonic origin, in the context of larger arrays studies of genes involved in DNA stability or integrity.
    The International journal of biological markers 01/2011; 26(1):37-42. DOI:10.5301/JBM.2011.6285 · 1.36 Impact Factor
  • Clinical and Experimental Dermatology 07/2009; 34(7):e385-6. DOI:10.1111/j.1365-2230.2009.03352.x · 1.23 Impact Factor