Ryohei Ichishita

Kyushu University, Fukuoka-shi, Fukuoka-ken, Japan

Are you Ryohei Ichishita?

Claim your profile

Publications (2)8.95 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria utilize diverse cytoskeleton-based mechanisms to control their functions and morphology. Here, we report a role for kinesin-like protein KLP6, a newly identified member of the kinesin family, in mitochondrial morphology and dynamics. An RNA interference screen using Caenorhabditis elegans led us to identify a C. elegans KLP-6 involved in maintaining mitochondrial morphology. We cloned a cDNA coding for a rat homolog of C. elegans KLP-6, which is an uncharacterized kinesin in vertebrates. A rat KLP6 mutant protein lacking the motor domain induced changes in mitochondrial morphology and significantly decreased mitochondrial motility in HeLa cells, but did not affect the morphology of other organelles. In addition, the KLP6 mutant inhibited transport of mitochondria during anterograde movement in differentiated neuro 2a cells. To date, two kinesins, KIF1Bα and kinesin heavy chain (KHC; also known as KIF5) have been shown to be involved in the distribution of mitochondria in neurons. Expression of the kinesin heavy chain/KIF5 mutant prevented mitochondria from entering into neurites, whereas both the KLP6 and KIF1Bα mutants decreased mitochondrial transport in axonal neurites. Furthermore, both KLP6 and KIF1Bα bind to KBP, a KIF1-binding protein required for axonal outgrowth and mitochondrial distribution. Thus, KLP6 is a newly identified kinesin family member that regulates mitochondrial morphology and transport.
    Journal of Cell Science 07/2011; 124(Pt 14):2457-65. · 5.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are dynamic organelles that frequently divide and fuse together, resulting in the formation of intracellular tubular networks. In yeast and mammals, several factors including Drp1/Dnm1 and Mfn/Fzo1 are known to regulate mitochondrial morphology by controlling membrane fission or fusion. Here, we report the systematic screening of Caenorhabditis elegans mitochondrial proteins required to maintain the morphology of the organelle using an RNA interference feeding library. In C. elegans body wall muscle cells, mitochondria usually formed tubular structures and were severely fragmented by the mutation in fzo-1 gene, indicating that the body wall muscle cells are suitable for monitoring changes in mitochondrial morphology due to gene silencing. Of 719 genes predicted to code for most of mitochondrial proteins, knockdown of >80% of them caused abnormal mitochondrial morphology, including fragmentation and elongation. These findings indicate that most fundamental mitochondrial functions, including metabolism and oxidative phosphorylation, are necessary for maintenance of the tubular networks as well as membrane fission and fusion. This is the first evidence that known mitochondrial activities are prerequisite for regulating the morphology of the organelle. Furthermore, 88 uncharacterized or poorly characterized genes were found in the screening to be implicated in mitochondrial morphology.
    Journal of Biochemistry 04/2008; 143(4):449-54. · 3.07 Impact Factor

Publication Stats

56 Citations
8.95 Total Impact Points


  • 2008
    • Kyushu University
      • Department of Molecular Biology
      Fukuoka-shi, Fukuoka-ken, Japan