S. Udry

Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, United States

Are you S. Udry?

Claim your profile

Publications (736)1617.56 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present Rossiter-McLaughlin observations of the transiting super-Earth 55 Cnc e collected during six transit events between January 2012 and November 2013 with HARPS and HARPS-N. We detect no radial-velocity signal above 35 cm/s (3-sigma) and confine the stellar v sin i to 0.2 +/- 0.5 km/s. The star appears to be a very slow rotator, producing a very low amplitude Rossiter-McLaughlin effect. Given such a low amplitude, the Rossiter-McLaughlin effect of 55 Cnc e is undetected in our data, and any spin-orbit angle of the system remains possible. We also performed Doppler tomography and reach a similar conclusion. Our results offer a glimpse of the capacity of future instrumentation to study low amplitude Rossiter-McLaughlin effects produced by super-Earths.
    The Astrophysical Journal Letters 08/2014; 792(2). · 6.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery from the WASP survey of two exoplanetary systems, each consisting of a Jupiter-sized planet transiting an 11th magnitude (V) main-sequence star. WASP-104b orbits its star in 1.75 d, whereas WASP-106b has the fourth-longest orbital period of any planet discovered by means of transits observed from the ground, orbiting every 9.29 d. Each planet is more massive than Jupiter (WASP-104b has a mass of $1.27 \pm 0.05~\mathrm{M_{Jup}}$, while WASP-106b has a mass of $1.93 \pm 0.08~\mathrm{M_{Jup}}$). Both planets are just slightly larger than Jupiter, with radii of $1.14 \pm 0.04$ and $1.09 \pm 0.04~\mathrm{R_{Jup}}$ for WASP-104 and WASP-106 respectively. No significant orbital eccentricity is detected in either system, and while this is not surprising in the case of the short-period WASP-104b, it is interesting in the case of WASP-106b, because many otherwise similar planets are known to have eccentric orbits.
    08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ultra-cool dwarfs are very low-mass stars or brown dwarfs and because of their faintness they are difficult targets for radial velocity and transit planet searches. High-precision astrometry is one way to efficiently discover planets around these objects. We are conducting a planet search survey of 20 M8-L2 using ground-based imaging astrometry with FORS2 at VLT. The realised accuracy of 100 micro-arcseconds allows us to set stringent constraints on the presence of planets, to discover astrometric binaries, and to measure parallaxes with an unprecedented precision of 0.1 %. The obtained detection limits firmly establish that giant planets are rare around UCDs at all separations. The astrometric performance of our programme is comparable to what is expected from Gaia observations of single faint objects and we discuss potential synergies for planet searches around ultracool dwarfs. We estimate that Gaia will be able to characterise ~100 astrometric binaries with an ultracool primary.
    07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of WASP-117b, the first planet with a period beyond 10 days found by the WASP survey. The planet has a mass of M_p = 0.2755 (+/-0.0090) M_jup, a radius of R_p = 1.021 (-0.065 +0.076) R_jup and is in an eccentric (e = 0.302 +/-0.023), 10.02165 +/- 0.00055 d orbit around a main-sequence F9 star. The host star's brightness (V=10.15 mag) makes WASP-117 a good target for follow-up observations, and with a planetary equilibrium temperature of T_eq = 1024 (-26 +30) K and a low planetary density (rho_p = 0.259 (-0.048 +0.054) rho_jup) it is one of the best targets for transmission spectroscopy among planets with periods around 10 days. From a measurement of the Rossiter-McLaughlin effect, we infer a projected angle between the planetary orbit and stellar spin axes of beta = -44 (+/-11) deg, and we further derive an orbital obliquity of psi = 69.5 (+3.6 -3.1) deg. Owing to the large orbital separation, tidal forces causing orbital circularization and realignment of the planetary orbit with the stellar plane are weak, having had little impact on the planetary orbit over the system lifetime. WASP-117b joins a small sample of transiting giant planets with well characterized orbits at periods above ~8 days.
    06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aims. In this work we develop a technique to obtain high precision determinations of both metallicity and effective temperature of M dwarfs in the optical. Methods. A new method is presented that makes use of the information of 4104 lines in the 530-690 nm spectral region. It consists in the measurement of pseudo equivalent widths and their correlation with established scales of [Fe/H] and $T_{eff}$. Results. Our technique achieves a $rms$ of 0.08$\pm$0.01 for [Fe/H], 91$\pm$13 K for $T_{eff}$, and is valid in the (-0.85, 0.26 dex), (2800, 4100 K), and (M0.0, M5.0) intervals for [Fe/H], $T_{eff}$ and spectral type respectively. We also calculated the RMSE$_{V}$ which estimates uncertainties of the order of 0.12 dex for the metallicity and of 293 K for the effective temperature. The technique has an activity limit and should only be used for stars with $\log{L_{H_{\alpha}}/L_{bol}} < -4.0$. Our method is available online at \url{http://www.astro.up.pt/resources/mcal}.
    06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with I<13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending mainly on the star's ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10-100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every four months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.
    06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kepler-10b was the first rocky planet detected by the Kepler satellite and con- firmed with radial velocity follow-up observations from Keck-HIRES. The mass of the planet was measured with a precision of around 30%, which was insufficient to constrain models of its internal structure and composition in detail. In addition to Kepler-10b, a second planet transiting the same star with a period of 45 days was sta- tistically validated, but the radial velocities were only good enough to set an upper limit of 20 Mearth for the mass of Kepler-10c. To improve the precision on the mass for planet b, the HARPS-N Collaboration decided to observe Kepler-10 intensively with the HARPS-N spectrograph on the Telescopio Nazionale Galileo on La Palma. In to- tal, 148 high-quality radial-velocity measurements were obtained over two observing seasons. These new data allow us to improve the precision of the mass determina- tion for Kepler-10b to 15%. With a mass of 3.33 +/- 0.49 Mearth and an updated radius of 1.47 +0.03 -0.02 Rearth, Kepler-10b has a density of 5.8 +/- 0.8 g cm-3, very close to the value -0.02 predicted by models with the same internal structure and composition as the Earth. We were also able to determine a mass for the 45-day period planet Kepler-10c, with an even better precision of 11%. With a mass of 17.2 +/- 1.9 Mearth and radius of 2.35 +0.09 -0.04 Rearth, -0.04 Kepler-10c has a density of 7.1 +/- 1.0 g cm-3. Kepler-10c appears to be the first strong evidence of a class of more massive solid planets with longer orbital periods.
    05/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Young, nearby stars are ideal targets to search for planets using the direct imaging technique. The determination of stellar parameters is crucial for the interpretation of imaging survey results particularly since the luminosity of substellar objects has a strong dependence on system age. We have conducted a large program with NaCo at the VLT in order to search for planets and brown dwarfs in wide orbits around 86 stars. A large fraction of the targets observed with NaCo were poorly investigated in the literature. We performed a study to characterize the fundamental properties (age, distance, mass) of the stars in our sample. To improve target age determinations, we compiled and analyzed a complete set of age diagnostics. We measured spectroscopic parameters and age diagnostics using dedicated observations acquired with FEROS and CORALIE spectrographs at La Silla Observatory. We also made extensive use of archival spectroscopic data and results available in the literature. Additionally, we exploited photometric time-series, available in ASAS and Super-WASP archives, to derive rotation period for a large fraction of our program stars. We provided updated characterization of all the targets observed in the VLT NaCo Large program, a survey designed to probe the occurrence of exoplanets and brown dwarfs in wide orbits. The median distance and age of our program stars are 64 pc and 100 Myr, respectively. Nearly all the stars have masses between 0.70 and 1.50sun, with a median value of 1.01 Msun. The typical metallicity is close to solar, with a dispersion that is smaller than that of samples usually observed in radial velocity surveys. Several stars are confirmed or proposed here to be members of nearby young moving groups. Eight spectroscopic binaries are identified.
    05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The atmospheric composition of low-mass exoplanets is the object of intense observational and theoretical investigations. GJ3470b is a warm uranus recently detected in transit across a bright late-type star. The transit of this planet has already been observed in several band passes from the ground and space, allowing observers to draw an intriguing yet incomplete transmission spectrum of the planet atmospheric limb. In particular, published data in the visible suggest the existence of a Rayleigh scattering slope, making GJ3470b a unique case among the known neptunes, while data obtained beyond 2 um are consistent with a flat infrared spectrum. The unexplored near-infrared spectral region between 1 and 2 um, is thus key to undertanding the atmospheric nature of GJ3470b. Here, we report on the first space-borne spectrum of GJ3470, obtained during one transit of the planet with WFC3 on board HST, operated in stare mode. The spectrum covers the 1.1--1.7-um region with a resolution of about 300. We retrieve the transmission spectrum of GJ3470b with a chromatic planet-to-star radius ratio precision of 0.15% (about one scale height) per 40-nm bins. At this precision, the spectrum appears featureless, in good agreement with ground-based and Spitzer infrared data at longer wavelengths, pointing to a flat transmission spectrum from 1 to 5 um. We present new simulations of transmission spectra for GJ3470b, which allow us to show that the HST/WFC3 observations rule out cloudless hydrogen-rich atmospheres (>10 sigma) as well as hydrogen-rich atmospheres with tholin haze (>5 sigma). Adding our near-infrared measurements to the full set of previously published data from 0.3 to 5 um, we find that a cloudy, hydrogen-rich atmosphere can explain the full transmission spectrum if, at the terminator, the clouds are located at low pressures (<1 mbar) or the water mixing ratio is extremely low (<1 ppm).
    05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The atmospheric composition of low-mass exoplanets is the object of intense observational and theoretical investigations. GJ3470b is a warm uranus recently detected in transit across a bright late-type star. The transit of this planet has already been observed in several band passes from the ground and space, allowing observers to draw an intriguing yet incomplete transmission spectrum of the planet atmospheric limb. In particular, published data in the visible suggest the existence of a Rayleigh scattering slope, making GJ3470b a unique case among the known neptunes, while data obtained beyond 2 um are consistent with a flat infrared spectrum. The unexplored near-infrared spectral region between 1 and 2 um, is thus key to undertanding the atmospheric nature of GJ3470b. Here, we report on the first space-borne spectrum of GJ3470, obtained during one transit of the planet with WFC3 on board HST, operated in stare mode. The spectrum covers the 1.1--1.7-um region with a resolution of about 300. We retrieve the transmission spectrum of GJ3470b with a chromatic planet-to-star radius ratio precision of 0.15% (about one scale height) per 40-nm bins. At this precision, the spectrum appears featureless, in good agreement with ground-based and Spitzer infrared data at longer wavelengths, pointing to a flat transmission spectrum from 1 to 5 um. We present new simulations of transmission spectra for GJ3470b, which allow us to show that the HST/WFC3 observations rule out cloudless hydrogen-rich atmospheres (>10 sigma) as well as hydrogen-rich atmospheres with tholin haze (>5 sigma). Adding our near-infrared measurements to the full set of previously published data from 0.3 to 5 um, we find that a cloudy, hydrogen-rich atmosphere can explain the full transmission spectrum if, at the terminator, the clouds are located at low pressures (<1 mbar) or the water mixing ratio is extremely low (<1 ppm).
    04/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The search for planets orbiting metal-poor stars is of uttermost importance for our understanding of the planet formation models. However, no dedicated searches have been conducted so far for very low mass planets orbiting such objects. Only a few cases of low mass planets orbiting metal-poor stars are thus known. Amongst these, HD41248 is a metal-poor, solar-type star on which a resonant pair of super-Earth like planets has In the present paper we present a new planet search program that is using the HARPS spectrograph to search for Neptunes and Super-Earths orbiting a sample of metal-poor FGK dwarfs. We then present a detailed analysis of an additional 162 radial velocity measurements of HD41248, obtained within this program, with the goal of confirming the existence of the proposed planetary system. We analyzed the precise radial velocities, obtained with the HARPS spectrograph, together with several stellar activity diagnostics and line profile indicators. A careful analysis shows no evidence for the planetary system previously announced. One of the signals, with a period of about 25 days, is shown to be related to the rotational period of the star, and is clearly seen in some of the activity proxies. The remaining signal (P~18 days) could not be convincingly retrieved in the new data set. We discuss possible causes for the complex (evolving) signals observed in the data of HD41248, proposing that they may be explained by the appearance and disappearance of active regions on the surface of a star with strong differential rotation, or by a combination of the sparse data sampling and active region evolution.
    04/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Circumbinary planets have been the subject of much recent work, providing both simulations and new discoveries. We present the first observationally based determination of the rate of occurrence of these planets. This is derived from the publicly available Kepler data, using an automated search algorithm and debiasing process to produce occurrence rates implied by the seven systems already known. These rates depend critically on the planetary inclination distribution: if circumbinary planets are preferentially coplanar with their host binaries, as has been suggested, then the rate of occurrence of planets with $R_p>6R_\oplus$ orbiting with $P_p<300$\ d is $10.0 ^{+18}_{-6.5}$% (95% confidence limits), higher than but consistent with single star rates. If on the other hand the underlying planetary inclination distribution is isotropic, then this occurrence rate rises dramatically, to give a lower limit of 47%. This implies that formation and subsequent dynamical evolution in circumbinary disks must either lead to largely coplanar planets, or proceed with significantly greater ease than in circumstellar disks. As a result of this investigation we also show that giant planets (${>}10R_\oplus$) are significantly less common in circumbinary orbits than their smaller siblings, and confirm that the proposed shortfall of circumbinary planets orbiting the shorter period binaries in the Kepler sample is a real effect.
    04/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well-known that stars with giant planets are on average more metal-rich than stars without giant planets, whereas stars with detected low-mass planets do not need to be metal-rich. With the aim of studying the weak boundary that separates giant planets and brown dwarfs (BDs) and their formation mechanism, we analyze the spectra of a sample of stars with already confirmed BD companions both by radial velocity and astrometry. We employ standard and automatic tools to perform an EW-based analysis and to derive chemical abundances from CORALIE spectra of stars with BD companions. We compare these abundances with those of stars without detected planets and with low-mass and giant-mass planets. We find that stars with BDs do not have metallicities and chemical abundances similar to those of giant-planet hosts but they resemble the composition of stars with low-mass planets. The distribution of mean abundances of $\alpha$-elements and iron peak elements of stars with BDs exhibit a peak at about solar abundance whereas for stars with low-mass and high-mass planets the [X$_\alpha$/H] and [X$_{\rm Fe}$/H] peak abundances remain at $\sim -0.1$~dex and $\sim +0.15$~dex, respectively. We display these element abundances for stars with low-mass and high-mass planets, and BDs versus the minimum mass, $m_C \sin i$, of the most-massive substellar companion in each system, and we find a maximum in $\alpha$-element as well as Fe-peak abundances at $m_C \sin i \sim 1.35\pm 0.20$ jupiter masses. We discuss the implication of these results in the context of the formation scenario of BDs in comparison with that of giant planets.
    04/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The search for planets orbiting metal-poor stars is of uttermost importance for our understanding of the planet formation models. However, no dedicated searches have been conducted so far for very low mass planets orbiting such objects. Only a few cases of low mass planets orbiting metal-poor stars are thus known. Amongst these, HD41248 is a metal-poor, solar-type star on which a resonant pair of super-Earth like planets has In the present paper we present a new planet search program that is using the HARPS spectrograph to search for Neptunes and Super-Earths orbiting a sample of metal-poor FGK dwarfs. We then present a detailed analysis of an additional 162 radial velocity measurements of HD41248, obtained within this program, with the goal of confirming the existence of the proposed planetary system. We analyzed the precise radial velocities, obtained with the HARPS spectrograph, together with several stellar activity diagnostics and line profile indicators. A careful analysis shows no evidence for the planetary system previously announced. One of the signals, with a period of about 25 days, is shown to be related to the rotational period of the star, and is clearly seen in some of the activity proxies. The remaining signal (P~18 days) could not be convincingly retrieved in the new data set. We discuss possible causes for the complex (evolving) signals observed in the data of HD41248, proposing that they may be explained by the appearance and disappearance of active regions on the surface of a star with strong differential rotation, or by a combination of the sparse data sampling and active region evolution.
    03/2014;
  • 03/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Circumbinary planets have been the subject of much recent work, providing both simulations and new discoveries. We present the first observationally based determination of the rate of occurrence of these planets. This is derived from the publicly available Kepler data, using an automated search algorithm and debiasing process to produce occurrence rates implied by the seven systems already known. These rates depend critically on the planetary inclination distribution: if circumbinary planets are preferentially coplanar with their host binaries, as has been suggested, then the rate of occurrence of planets with $R_p>6R_\oplus$ orbiting with $P_p<300$\ d is $10.0 ^{+18}_{-6.5}$% (95% confidence limits), higher than but consistent with single star rates. If on the other hand the underlying planetary inclination distribution is isotropic, then this occurrence rate rises dramatically, to give a lower limit of 47%. This implies that formation and subsequent dynamical evolution in circumbinary disks must either lead to largely coplanar planets, or proceed with significantly greater ease than in circumstellar disks. As a result of this investigation we also show that giant planets (${>}10R_\oplus$) are significantly less common in circumbinary orbits than their smaller siblings, and confirm that the proposed shortfall of circumbinary planets orbiting the shorter period binaries in the Kepler sample is a real effect.
    03/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the astrometric reduction of images obtained with the FORS2/VLT camera in the framework of an astrometric planet search around 20 M/L-transition dwarfs. We present the correction of systematic errors, the achieved astrometric performance, and a new astrometric catalogue containing the faint reference stars in 20 fields located close to the Galactic plane. We detected three types of systematic errors in the FORS2 astrometry: the relative motion of the camera's two CCD chips, errors that are correlated in space, and an error contribution of yet unexplained origin. The relative CCD motion has probably a thermal origin and usually is 0.001-0.010 px (~0.1-1 mas), but sometimes amounts to 0.02-0.05 px (3-6 mas). This instability and space-correlated errors are detected and mitigated using reference stars. The third component of unknown origin has an amplitude of 0.03-0.14 mas and is independent of the observing conditions. We find that a consecutive sequence of 32 images of a well-exposed star over 40 min at 0.6" seeing results in a median r.m.s. of the epoch residuals of 0.126 mas. Overall, the epoch residuals are distributed according to a normal law with a chi2~1. We compiled a catalogue of 12000 stars with I-band magnitudes of 16-22 located in 20 fields, each covering ~2x2'. It contains I-band magnitudes, ICRF positions with 40-70 mas precision, and relative proper motions and absolute trigonometric parallaxes with a precision of 0.1 mas/yr and 0.1 mas at the bright end, respectively.
    03/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Rossiter-McLaughlin observations of WASP-13b and WASP-32b and determine the sky-projected angle between the normal of the planetary orbit and the stellar rotation axis ($\lambda$). WASP-13b and WASP-32b both have prograde orbits and are consistent with alignment with measured sky-projected angles of $\lambda={8^{\circ}}^{+13}_{-12}$ and $\lambda={-2^{\circ}}^{+17}_{-19}$, respectively. Both WASP-13 and WASP-32 have $T_{\mathrm{eff}}<6250$K and therefore these systems support the general trend that aligned planetary systems are preferentially found orbiting cool host stars. A Lomb-Scargle periodogram analysis was carried out on archival SuperWASP data for both systems. A statistically significant stellar rotation period detection (above 99.9\% confidence) was identified for the WASP-32 system with $P_{\mathrm{rot}}=11.6 \pm 1.0 $ days. This rotation period is in agreement with the predicted stellar rotation period calculated from the stellar radius, $R_{\star}$, and $v \sin i$ if a stellar inclination of $i_{\star}=90^{\circ}$ is assumed. With the determined rotation period, the true 3D angle between the stellar rotation axis and the planetary orbit, $\psi$, was found to be $\psi=11^{\circ} \pm 14$. We conclude with a discussion on the alignment of systems around cool host stars with $T_{\mathrm{eff}}<6150$K by calculating the tidal dissipation timescale. We find that systems with short tidal dissipation timescales are preferentially aligned and systems with long tidal dissipation timescales have a broad range of obliquities.
    03/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extrasolar planet searches targeting very low-mass stars and brown dwarfs are hampered by intrinsic or instrumental limitations. Time series of astrometric measurements with precisions better than one milli-arcsecond can yield new evidence on the planet occurrence around these objects. We present first results of an astrometric search for planets around 20 nearby dwarf stars with spectral types M8-L2. Over a timespan of two years, we obtained I-band images of the target fields with the FORS2 camera at the Very Large Telescope. Using background stars as references, we monitored the targets' astrometric trajectories, which allowed us to measure parallax and proper motions, set limits on the presence of planets, and to discover the orbital motions of two binary systems. We determined trigonometric parallaxes with an average accuracy of 0.09 mas (~0.2 %) resulting in a reference sample for the study of ultracool dwarfs at the M/L transition, whose members are located at distances of 9.5-40 pc. This sample contains two newly discovered tight binaries (DE0630-18 and DE0823-49) and one previously known wide binary (DE1520-44). Only one target shows I-band variability >5 mmag r.m.s. We derived planet exclusion limits that set an upper limit of 9 % to the occurrence of giant planets with masses >5 MJup in intermediate-separation (0.01-0.8 AU) orbits around M8-L2 dwarfs. We demonstrated that astrometric observations with an accuracy of 120 micro-arcsec over two years are feasible from the ground and can be used for a planet search survey. The detection of two tight very low-mass binaries showed that our search strategy is efficient and may lead to the detection of planetary-mass companions through follow-up observations.
    03/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Super-Earths transiting nearby bright stars are key objects that simultaneously allow for accurate measurements of both their mass and radius, providing essential constraints on their internal composition. We present here the confirmation, based on Spitzer transit observations, that the super-Earth HD 97658 b transits its host star. HD 97658 is a low-mass ($M_*=0.77\pm0.05\,M_{\odot}$) K1 dwarf, as determined from the Hipparcos parallax and stellar evolution modeling. To constrain the planet parameters, we carry out Bayesian global analyses of Keck-HIRES radial velocities, and MOST and Spitzer photometry. HD 97658 b is a massive ($M_P=7.55^{+0.83}_{-0.79} M_{\oplus}$) and large ($R_{P} = 2.247^{+0.098}_{-0.095} R_{\oplus}$ at 4.5 $\mu$m) super-Earth. We investigate the possible internal compositions for HD 97658 b. Our results indicate a large rocky component, by at least 60% by mass, and very little H-He components, at most 2% by mass. We also discuss how future asteroseismic observations can improve the knowledge of the HD 97658 system, in particular by constraining its age. Orbiting a bright host star, HD 97658 b will be a key target for coming space missions TESS, CHEOPS, PLATO, and also JWST, to characterize thoroughly its structure and atmosphere.
    02/2014; 786(1).

Publication Stats

6k Citations
1,617.56 Total Impact Points

Institutions

  • 2014
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
  • 1970–2014
    • University of Geneva
      • Department of Astronomy
      Genève, Geneva, Switzerland
  • 2013
    • University of Porto
      • Departamento de Física e Astronomia
      Oporto, Porto, Portugal
  • 2012
    • Massachusetts Institute of Technology
      Cambridge, Massachusetts, United States
  • 2010
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France
    • Instituto de Astrofísica de Canarias
      San Cristóbal de La Laguna, Canary Islands, Spain
  • 2009
    • SETI Institute
      Mountain View, California, United States
    • Keele University
      • Department of Physics and Astrophysics
      Newcastle under Lyme, ENG, United Kingdom
  • 2006
    • Weizmann Institute of Science
      • Faculty of Physics
      Israel
  • 1998–2006
    • Université Libre de Bruxelles
      • Faculty of Sciences
      Brussels, BRU, Belgium
  • 1999
    • Universidade Federal do Rio Grande do Norte
      • Departamento de Geofísica
      Natal, Estado do Rio Grande do Norte, Brazil