Are you R. Kandan?

Claim your profile

Publications (2)0 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper introduces a scheme for classification of online handwritten characters based on polynomial regression of the sampled points of the sub-strokes in a character. The segmentation is done based on the velocity profile of the written character and this requires a smoothening of the velocity profile. We propose a novel scheme for smoothening the velocity profile curve and identification of the critical points to segment the character. We also propose another method for segmentation based on the human eye perception. We then extract two sets of features for recognition of handwritten characters. Each sub-stroke is a simple curve, a part of the character, and is represented by the distance measure of each point from the first point. This forms the first set of feature vector for each character. The second feature vector are the coefficients obtained from the B-splines fitted to the control knots obtained from the segmentation algorithm. The feature vector is fed to the SVM classifier and it indicates an efficiency of 68% using the polynomial regression technique and 74% using the spline fitting method.
    Applications of Computer Vision, 2008. WACV 2008. IEEE Workshop on; 02/2008
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes a two level classification algorithm to discriminate the handwritten elements from the printed text in a printed document. The proposed technique is independent of size, slant, orientation, translation and other variations in handwritten text. At the first level of classification, we use two classifiers and present a comparison between the nearest neighbour classifier and Support Vector Machines(SVM) classifier to localize the handwritten text. The features that are extracted from the document are seven invariant central moments and based on these features, we classify the text as hand-written. At the second level, we use Delaunay triangulation to reclassify the misclassified elements. When Delaunay triangulation is imposed on the centroid points of the connected components, we extract features based on the triangles and reclassify the misclassified elements. We remove the noise components in the document as part of the pre-processing step.
    Advances in Visual Computing, Third International Symposium, ISVC 2007, Lake Tahoe, NV, USA, November 26-28, 2007, Proceedings, Part II; 01/2007