R. B. Wayth

Curtin University, Bentley, Western Australia, Australia

Are you R. B. Wayth?

Claim your profile

Publications (102)303.32 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Refraction and diffraction of incoming radio waves by the ionosphere induce time variability in the angular positions, peak amplitudes and shapes of radio sources, potentially complicating the automated cross-matching and identification of transient and variable radio sources. In this work, we empirically assess the effects of the ionosphere on data taken by the Murchison Widefield Array (MWA) radio telescope. We directly examine 51 hours of data observed over 10 nights under quiet geomagnetic conditions (global storm index Kp < 2), analysing the behaviour of short-timescale angular position and peak flux density variations of around ten thousand unresolved sources. We find that while much of the variation in angular position can be attributed to ionospheric refraction, the characteristic displacements (10-20 arcsec) at 154 MHz are small enough that search radii of 1-2 arcmin should be sufficient for cross-matching under typical conditions. By examining bulk trends in amplitude variability, we place upper limits on the modulation index associated with ionospheric scintillation of 1-3% for the various nights. For sources fainter than ~1 Jy, this variation is below the image noise at typical MWA sensitivities. Our results demonstrate that the ionosphere is not a significant impediment to the goals of time-domain science with the MWA at 154 MHz.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present observations of high-amplitude rapid (2 s) variability toward two bright, compact extragalactic radio sources out of several hundred of the brightest radio sources in one of the 30x30 deg MWA Epoch of Reionization fields using the Murchison Widefield Array (MWA) at 155 MHz. After rejecting intrinsic, instrumental, and ionospheric origins we consider the most likely explanation for this variability to be interplanetary scintillation (IPS), likely the result of a large coronal mass ejection propagating from the Sun. This is confirmed by roughly contemporaneous observations with the Ooty Radio Telescope. We see evidence for structure on spatial scales ranging from <1000 km to >1e6 km. The serendipitous night-time nature of these detections illustrates the new regime that the MWA has opened for IPS studies with sensitive night-time, wide-field, low-frequency observations. This regime complements traditional dedicated strategies for observing IPS and can be utilized in real-time to facilitate dedicated follow-up observations. At the same time, it allows large-scale surveys for compact (arcsec) structures in low-frequency radio sources despite the 2 arcmin resolution of the array.
    07/2015; 809(1). DOI:10.1088/2041-8205/809/1/L12
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on observations of giant pulses from the Crab pulsar performed simultaneously with the Parkes radio telescope and the incoherent combination of the Murchison Widefield Array (MWA) antenna tiles. The observations were performed over a duration of approximately one hour at a center frequency of 1382 MHz with 340 MHz bandwidth at Parkes, and at a center frequency of 193 MHz with 15 MHz bandwidth at the MWA. Our analysis has led to the detection of 55 giant pulses at the MWA and 2075 at Parkes above a threshold of 3.5$\sigma$ and 6.5$\sigma$ respectively. We detected 51$\%$ of the MWA giant pulses at the Parkes radio telescope, with spectral indices in the range of $-3.6>\alpha> -4.9$ ($S_{\rm \nu} \propto \nu^\alpha$). We present a Monte Carlo analysis supporting the conjecture that the giant pulse emission in the Crab is intrinsically broadband, the less than $100\%$ correlation being due to the relative sensitivities of the two instruments and the width of the spectral index distribution. Our observations are consistent with the hypothesis that the spectral index of giant pulses is drawn from normal distribution of standard deviation 0.6, but with a mean that displays an evolution with frequency from -3.00 at 1382 MHz, to -2.85 at 192 MHz.
    The Astrophysical Journal 07/2015; 809(1). DOI:10.1088/0004-637X/809/1/51 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present broadband observations and spectral modeling of PKS B0008-421, and identify it as an extreme gigahertz-peaked spectrum (GPS) source. PKS B0008-421 is characterized by the steepest known spectral slope below the turnover, close to the theoretical limit of synchrotron self-absorption, and the smallest known spectral width of any GPS source. Spectral coverage of the source spans from 0.118 to 22 GHz, which includes data from the Murchison Widefield Array and the wide bandpass receivers on the Australia Telescope Compact Array. We have implemented a Bayesian inference model fitting routine to fit the data with various absorption models. We find that without the inclusion of a high-frequency exponential break the absorption models can not accurately fit the data, with significant deviations above and below the peak in the radio spectrum. The addition of a high-frequency break provides acceptable spectral fits for the inhomogeneous free-free absorption and double-component synchrotron self-absorption models, with the inhomogeneous free-free absorption model statistically favored. The requirement of a high-frequency spectral break implies that the source has ceased injecting fresh particles. Additional support for the inhomogeneous free-free absorption model as being responsible for the turnover in the spectrum is given by the consistency between the physical parameters derived from the model fit and the implications of the exponential spectral break, such as the necessity of the source being surrounded by a dense ambient medium to maintain the peak frequency near the gigahertz region. The discovery of PKS B0008-421 suggests that the next generation of low radio frequency surveys could reveal a large population of GPS sources that have ceased activity, and that a portion of the ultra-steep spectrum source population could be composed of these GPS sources in a relic phase.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We compare first order (refractive) ionospheric effects seen by the Murchison Widefield Array (MWA) with the ionosphere as inferred from Global Positioning System (GPS) data. The first order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the Center for Orbit Determination in Europe (CODE), using data from globally distributed GPS receivers. However, for the more accurate local ionosphere estimates required for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver Differential Code Biases (DCBs). The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling, a requirement for establishing dense GPS networks in arbitrary locations in the vicinity of the MWA. In this work, single GPS station-based ionospheric modelling is performed at a time resolution of 10 minutes. Also the receiver DCBs are estimated for selected Geoscience Australia (GA) GPS receivers, located at Murchison Radio Observatory (MRO1), Yarragadee (YAR3), Mount Magnet (MTMA) and Wiluna (WILU). The ionospheric gradients estimated from GPS are compared with the ionospheric gradients inferred from radio source position shifts observed with the MWA. The ionospheric gradients at all the GPS stations show a correlation with the gradients observed with the MWA. The ionosphere estimates obtained using GPS measurements show promise in terms of providing calibration information for the MWA.
    Publications of the Astronomical Society of Australia 07/2015; 32. DOI:10.1017/pasa.2015.29 · 2.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We confirm our recent prediction of the "pitchfork" foreground signature in power spectra of high-redshift 21 cm measurements, wherein the interferometer is sensitive to large-scale structure on all baselines. This is due to the inherent response of a wide-field instrument and is characterized by enhanced power from foreground emission in Fourier modes adjacent to those considered to be most sensitive to the cosmological HI signal. In our recent paper, many signatures from the simulation which predicted this feature were validated against Murchison Widefield Array (MWA) data but this key pitchfork signature was close to the noise level. In this paper, we improve the data sensitivity through coherent averaging of 12 independent snapshots with identical instrument settings, and provide the first confirmation of the prediction with a signal-noise ratio > 10. This wide-field effect can be mitigated by careful antenna designs that suppress sensitivity near the horizon. Simple models for antenna apertures proposed for future instruments such as the Hydrogen Epoch of Reionization Array and the Square Kilometre Array indicate they should suppress foreground leakage from the pitchfork by ~40 dB relative to the MWA, and significantly increase the likelihood of cosmological signal detection in these critical Fourier modes in the three-dimensional power spectrum.
    06/2015; 807(2). DOI:10.1088/2041-8205/807/2/L28
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low-frequency, wide field-of-view (FoV) radio telescopes such as the Murchison Widefield Array (MWA) enable the ionosphere to be sampled at high spatial completeness. We present the results of the first power spectrum analysis of ionospheric fluctuations in MWA data, where we examined the position offsets of radio sources appearing in two datasets. The refractive shifts in the positions of celestial sources are proportional to spatial gradients in the electron column density transverse to the line of sight. These can be used to probe plasma structures and waves in the ionosphere. The regional (10-100 km) scales probed by the MWA, determined by the size of its FoV and the spatial density of radio sources (typically thousands in a single FoV), complement the global (100-1000 km) scales of GPS studies and local (0.01-1 km) scales of radar scattering measurements. Our data exhibit a range of complex structures and waves. Some fluctuations have the characteristics of travelling ionospheric disturbances (TIDs), while others take the form of narrow, slowly-drifting bands aligned along the Earth's magnetic field.
    06/2015; DOI:10.1002/2015RS005711
  • [Show abstract] [Hide abstract]
    ABSTRACT: The separation of the faint cosmological background signal from bright astrophysical foregrounds remains one of the most daunting challenges of mapping the high-redshift intergalactic medium with the redshifted 21 cm line of neutral hydrogen. Advances in mapping and modeling of diffuse and point source foregrounds have improved subtraction accuracy, but no subtraction scheme is perfect. Precisely quantifying the errors and error correlations due to missubtracted foregrounds allows for both the rigorous analysis of the 21 cm power spectrum and for the maximal isolation of the "EoR window" from foreground contamination. We present a method to infer the covariance of foreground residuals from the data itself in contrast to previous attempts at a priori modeling. We demonstrate our method by setting limits on the power spectrum using a 3 h integration from the 128-tile Murchison Widefield Array. Observing between 167 and 198 MHz, we find at 95% confidence a best limit of Delta^2(k) < 3.7 x 10^4 mK^2 at comoving scale k = 0.18 hMpc^-1 and at z = 6.8, consistent with existing limits.
    Physical Review D 06/2015; 91(12). DOI:10.1103/PhysRevD.91.123011 · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have carried out multiwavelength observations of the near-by ($z=0.046$) rich, merging galaxy cluster Abell 3376 with the Murchison Widefield Array (MWA). As a part of the GaLactic and Extragalactic All-sky MWA survey (GLEAM), this cluster was observed at 88, 118, 154, 188 and 215 MHz. The known radio relics, towards the eastern and western peripheries of the cluster, were detected at all the frequencies. The relics, with a linear extent of $\sim$ 1 Mpc each, are separated by $\sim$ 2 Mpc. Combining the current observations with those in the literature, we have obtained the spectra of these relics over the frequency range 80 -- 1400 MHz. The spectra follow power laws, with $\alpha$ = $-1.17\pm0.06$ and $-1.37\pm0.08$ for the west and east relics, respectively ($S \propto \nu^{\alpha}$). Assuming the break frequency to be near the lower end of the spectrum we estimate the age of the relics to be $\sim$ 0.4 Gyr. No diffuse radio emission from the central regions of the cluster (halo) was detected. The upper limit on the radio power of any possible halo that might be present in the cluster is a factor of 35 lower than that expected from the radio power and X-ray luminosity correlation for cluster halos. From this we conclude that the cluster halo is very extended ($>$ 500 kpc) and/or most of the radio emission from the halo has decayed. The current limit on the halo radio power is a factor of ten lower than the existing upper limits with possible implications for models of halo formation.
    Monthly Notices of the Royal Astronomical Society 06/2015; 451(4). DOI:10.1093/mnras/stv1152 · 5.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Detection of the fluctuations in 21 cm line emission from neutral hydrogen during the Epoch of Reionization in thousand hour integrations poses stringent requirements on calibration and image quality, both of which necessitate accurate primary beam models. The Murchison Widefield Array (MWA) uses phased array antenna elements which maximize collecting area at the cost of complexity. To quantify their performance, we have developed a novel beam measurement system using the 137 MHz ORBCOMM satellite constellation and a reference dipole antenna. Using power ratio measurements, we measure the {\it in situ} beampattern of the MWA antenna tile relative to that of the reference antenna, canceling the variation of satellite flux or polarization with time. We employ angular averaging to mitigate multipath effects (ground scattering), and assess environmental systematics with a null experiment in which the MWA tile is replaced with a second reference dipole. We achieve beam measurements over 30 dB dynamic range in beam sensitivity over a large field of view (65\% of the visible sky), far wider and deeper than drift scans through astronomical sources allow. We verify an analytic model of the MWA tile at this frequency within a few percent statistical scatter within the full width at half maximum. Towards the edges of the main lobe and in the sidelobes, we measure tens of percent systematic deviations. We compare these errors with those expected from known beamforming errors.
    Radio Science 05/2015; DOI:10.1002/2015RS005678 · 1.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GLEAM, the GaLactic and Extragalactic All-sky MWA survey, is a survey of the entire radio sky south of declination + 25° at frequencies between 72 and 231 MHz, made with the MWA using a drift scan method that makes efficient use of the MWA’s very large field-of-view. We present the observation details, imaging strategies, and theoretical sensitivity for GLEAM. The survey ran for two years, the first year using 40-kHz frequency resolution and 0.5-s time resolution; the second year using 10-kHz frequency resolution and 2 s time resolution. The resulting image resolution and sensitivity depends on observing frequency, sky pointing, and image weighting scheme. At 154 MHz, the image resolution is approximately 2.5 × 2.2/cos (δ + 26.7°) arcmin with sensitivity to structures up to ~ 10° in angular size. We provide tables to calculate the expected thermal noise for GLEAM mosaics depending on pointing and frequency and discuss limitations to achieving theoretical noise in Stokes I images. We discuss challenges, and their solutions, that arise for GLEAM including ionospheric effects on source positions and linearly polarised emission, and the instrumental polarisation effects inherent to the MWA’s primary beam.
    Publications of the Astronomical Society of Australia 05/2015; 32. DOI:10.1017/pasa.2015.26 · 2.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ionization of the Earth's atmosphere by sunlight forms a complex, multi-layered plasma environment within the Earth's magnetosphere, the innermost layers being the ionosphere and plasmasphere. The plasmasphere is believed to be embedded with cylindrical density structures (ducts) aligned along the Earth's magnetic field, but direct evidence for these remains scarce. Here we report the first direct wide-angle observation of an extensive array of field-aligned ducts bridging the upper ionosphere and inner plasmasphere, using a novel ground-based imaging technique. We establish their heights and motions by feature-tracking and parallax analysis. The structures are strikingly organized, appearing as regularly-spaced, alternating tubes of overdensities and underdensities strongly aligned with the Earth's magnetic field. These findings represent the first direct visual evidence for the existence of such structures.
    Geophysical Research Letters 04/2015; 42(10). DOI:10.1002/2015GL063699 · 4.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Detection of 21 cm emission of HI from the epoch of reionization, at redshifts z>6, is limited primarily by foreground emission. We investigate the signatures of wide-field measurements and an all-sky foreground model using the delay spectrum technique that maps the measurements to foreground object locations through signal delays between antenna pairs. We demonstrate interferometric measurements are inherently sensitive to all scales, including the largest angular scales, owing to the nature of wide-field measurements. These wide-field effects are generic to all observations but antenna shapes impact their amplitudes substantially. A dish-shaped antenna yields the most desirable features from a foreground contamination viewpoint, relative to a dipole or a phased array. Comparing data from recent Murchison Widefield Array observations, we demonstrate that the foreground signatures that have the largest impact on the HI signal arise from power received far away from the primary field of view. We identify diffuse emission near the horizon as a significant contributing factor, even on wide antenna spacings that usually represent structures on small scales. For signals entering through the primary field of view, compact emission dominates the foreground contamination. These two mechanisms imprint a characteristic pitchfork signature on the "foreground wedge" in Fourier delay space. Based on these results, we propose that selective down-weighting of data based on antenna spacing and time can mitigate foreground contamination substantially by a factor ~100 with negligible loss of sensitivity.
    The Astrophysical Journal 02/2015; 804(1). DOI:10.1088/0004-637X/804/1/14 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An FPGA-based digital-receiver has been developed for a low-frequency imaging radio interferometer, the Murchison Widefield Array (MWA). The MWA, located at the Murchison Radio-astronomy Observatory (MRO) in Western Australia, consists of 128 dual-polarized aperture-array elements (tiles) operating between 80 and 300\,MHz, with a total processed bandwidth of 30.72 MHz for each polarization. Radio-frequency signals from the tiles are amplified and band limited using analog signal conditioning units; sampled and channelized by digital-receivers. The signals from eight tiles are processed by a single digital-receiver, thus requiring 16 digital-receivers for the MWA. The main function of the digital-receivers is to digitize the broad-band signals from each tile, channelize them to form the sky-band, and transport it through optical fibers to a centrally located correlator for further processing. The digital-receiver firmware also implements functions to measure the signal power, perform power equalization across the band, detect interference-like events, and invoke diagnostic modes. The digital-receiver is controlled by high-level programs running on a single-board-computer. This paper presents the digital-receiver design, implementation, current status, and plans for future enhancements.
    Experimental Astronomy 02/2015; 39(1). DOI:10.1007/s10686-015-9444-3 · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Murchison Widefield Array (MWA) is a Square Kilometre Array (SKA) Precursor. The telescope is located at the Murchison Radio--astronomy Observatory (MRO) in Western Australia (WA). The MWA consists of 4096 dipoles arranged into 128 dual polarisation aperture arrays forming a connected element interferometer that cross-correlates signals from all 256 inputs. A hybrid approach to the correlation task is employed, with some processing stages being performed by bespoke hardware, based on Field Programmable Gate Arrays (FPGAs), and others by Graphics Processing Units (GPUs) housed in general purpose rack mounted servers. The correlation capability required is approximately 8 TFLOPS (Tera FLoating point Operations Per Second). The MWA has commenced operations and the correlator is generating 8.3 TB/day of correlation products, that are subsequently transferred 700 km from the MRO to Perth (WA) in real-time for storage and offline processing. In this paper we outline the correlator design, signal path, and processing elements and present the data format for the internal and external interfaces.
    Publications of the Astronomical Society of Australia 01/2015; 32. DOI:10.1017/pasa.2015.5 · 2.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The science cases for incorporating high time resolution capabilities into modern radio telescopes are as numerous as they are compelling. Science targets range from exotic sources such as pulsars, to our Sun, to recently detected possible extragalactic bursts of radio emission, the so-called fast radio bursts (FRBs). Originally conceived purely as an imaging telescope, the initial design of the Murchison Widefield Array (MWA) did not include the ability to access high time and frequency resolution voltage data. However, the flexibility of the MWA's software correlator allowed an off-the-shelf solution for adding this capability. This paper describes the system that records the 100 micro-second and 10 kHz resolution voltage data from the MWA. Example science applications, where this capability is critical, are presented, as well as accompanying commissioning results from this mode to demonstrate verification.
    Publications of the Astronomical Society of Australia 01/2015; 32. DOI:10.1017/pasa.2015.6 · 2.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of a survey for low-frequency radio emission from 17 known exoplanetary systems with the Murchison Widefield Array. This sample includes 13 systems that have not previously been targeted with radio observations. We detected no radio emission at 154 MHz, and put 3 sigma upper limits in the range 15.2-112.5 mJy on this emission. We also searched for circularly polarized emission and made no detections, obtaining 3 sigma upper limits in the range 3.4-49.9 mJy. These are comparable with the best low-frequency radio limits in the existing literature and translate to luminosity limits of between 1.2 x 10(14) and 1.4 x 10(17) W if the emission is assumed to be 100 per cent circularly polarized. These are the first results from a larger program to systematically search for exoplanetary emission with the MWA.
    Monthly Notices of the Royal Astronomical Society 01/2015; 446(3):2560-2565. DOI:10.1093/mnras/stu2253 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an in-situ antenna characterization method and results for a "low-frequency" radio astronomy engineering prototype array, characterized over the 75-300 MHz frequency range. The presence of multiple cosmic radio sources, particularly the dominant Galactic noise, makes in-situ characterization at these frequencies challenging; however, it will be shown that high quality measurement is possible via radio interferometry techniques. This method is well-known in the radio astronomy community but seems less so in antenna measurement and wireless communications communities, although the measurement challenges involving multiple undesired sources in the antenna field-of-view bear some similarities. We discuss this approach and our results with the expectation that this principle may find greater application in related fields.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Murchison Widefield Array (MWA) is a new low-frequency interferometric radio telescope built in Western Australia at one of the locations of the future Square Kilometre Array (SKA). We describe the automated radio-frequency interference (RFI) detection strategy implemented for the MWA, which is based on the AOFlagger platform, and present 72-231-MHz RFI statistics from 10 observing nights. RFI detection removes 1.1% of the data. RFI from digital TV (DTV) is observed 3% of the time due to occasional ionospheric or atmospheric propagation. After RFI detection and excision, almost all data can be calibrated and imaged without further RFI mitigation efforts, including observations within the FM and DTV bands. The results are compared to a previously published Low-Frequency Array (LOFAR) RFI survey. The remote location of the MWA results in a substantially cleaner RFI environment compared to LOFAR's radio environment, but adequate detection of RFI is still required before data can be analysed. We include specific recommendations designed to make the SKA more robust to RFI, including: the availability of sufficient computing power for RFI detection; accounting for RFI in the receiver design; a smooth band-pass response; and the capability of RFI detection at high time and frequency resolution (second and kHz-scale respectively).
    Publications of the Astronomical Society of Australia 01/2015; 32. DOI:10.1017/pasa.2015.7 · 2.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The redshifted 21cm line of neutral hydrogen (HI), potentially observable at low radio frequencies (~50-200 MHz), should be a powerful probe of the physical conditions of the inter-galactic medium during Cosmic Dawn and the Epoch of Reionisation (EoR). The sky-averaged HI signal is expected to be extremely weak (~100 mK) in comparison to the foreground of up to 10000 K at the lowest frequencies of interest. The detection of such a weak signal requires an extremely stable, well characterised system and a good understanding of the foregrounds. Development of a nearly perfectly (~mK accuracy) calibrated total power radiometer system is essential for this type of experiment. We present the BIGHORNS (Broadband Instrument for Global HydrOgen ReioNisation Signal) experiment which was designed and built to detect the sky-averaged HI signal from the EoR at low radio frequencies. The BIGHORNS system is a mobile total power radiometer, which can be deployed in any remote location in order to collect radio-interference (RFI) free data. The system was deployed in remote, radio quiet locations in Western Australia and low RFI sky data have been collected. We present a description of the system, its characteristics, details of data analysis and calibration. We have identified multiple challenges to achieving the required measurement precision, which triggered two major improvements for the future system.
    Publications of the Astronomical Society of Australia 01/2015; 32. DOI:10.1017/pasa.2015.3 · 2.27 Impact Factor

Publication Stats

895 Citations
303.32 Total Impact Points

Institutions

  • 2011–2015
    • Curtin University
      Bentley, Western Australia, Australia
  • 2010–2015
    • Curtin University Australia
      • International Centre for Radio Astronomy Research (ICRAR)
      Bentley, Western Australia, Australia
    • International Centre for Radio Astronomy Research
      Perth City, Western Australia, Australia
  • 2014
    • The Amphibian Research Centre
      Melbourne, Victoria, Australia
  • 2008–2014
    • California Institute of Technology
      • Jet Propulsion Laboratory
      Pasadena, California, United States
  • 2013
    • Raman Research Institute
      Bengalūru, Karnātaka, India
    • Australian National University
      • Research School of Astronomy & Astrophysics
      Canberra, Australian Capital Territory, Australia
  • 2008–2013
    • Harvard-Smithsonian Center for Astrophysics
      Cambridge, Massachusetts, United States
  • 2012
    • University of Vic
      Vic, Catalonia, Spain
  • 2008–2012
    • MIT Haystack Observatory
      Miami, Florida, United States
  • 2004–2011
    • University of Melbourne
      • School of Physics
      Melbourne, Victoria, Australia
  • 2004–2006
    • Victoria University Melbourne
      Melbourne, Victoria, Australia