P. R. Halloran

University of Exeter, Exeter, England, United Kingdom

Are you P. R. Halloran?

Claim your profile

Publications (43)233.01 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ecosystem management frequently aims to manage resilience yet measuring resilience has proven difficult. Here, we quantify the ecological resilience of the largest reef in the Caribbean and map potential benefits of marine reserves under two scenarios of greenhouse gas emissions. Resilience is calculated using spatial ecological models and defined as the probability of a reef remaining in its coral-dominated basin of attraction such that it does not flip into an alternate, algal-dominated attractor. In practice, resilience is the probability that coral populations will maintain the ability to exhibit a recovery trend after acute disturbances such as hurricanes. The inputs required to estimate resilience are a reef's initial state, physical environment, and disturbance regime. One major driver of reef resilience is herbivory by parrotfish and recent action to protect parrotfish in Belize was found to have increased resilience 6-fold. However, the expected benefits of parrotfish protection to future coral cover were relatively modest with only a 2- to 2.6-fold improvement over a business-as-usual scenario, demonstrating how resilience and ecosystem states are decoupled. Global action to reduce greenhouse gas emissions had little impact on average coral state unless it was accompanied by local controls of fishing. However, combined global and local action reduced the rate of reef degradation threefold. Operationalizing resilience explicitly integrates available biophysical data and accommodates the complex interactions among ecological processes and multiple types of disturbance.
    Conservation Letters 05/2014; 7(3). · 4.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Addition and validation of an oxygen cycle to the ocean component of the FAMOUS climate model are described. Surface validation is carried out with respect to HadGEM2-ES where good agreement is found and where discrepancies are mainly attributed to disagreement in surface temperature structure between the models. The agreement between the models at depth (where observations are also used in the comparison) in the Southern Hemisphere is less encouraging than in the Northern Hemisphere. This is attributed to a combination of excessive surface productivity in FAMOUS' equatorial waters (and its concomitant effect on remineralisation at depth) and its reduced overturning circulation compared to HadGEM2-ES. For the entire Atlantic basin FAMOUS has a circulation strength of 12.7 ± 0.4 Sv compared to 15.0 ± 0.9 for HadGEM2-ES. The HadGEM2-ES data used in this paper were obtained from the online database of the fifth Coupled Model Intercomparison Project, CMIP5 (Taylor et al., 2012).
    01/2014; 7(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ongoing greenhouse gas emissions can modify climate processes and induce shifts in ocean temperature, pH, oxygen concentration, and productivity, which in turn could alter biological and social systems. Here, we provide a synoptic global assessment of the simultaneous changes in future ocean biogeochemical variables over marine biota and their broader implications for people. We analyzed modern Earth System Models forced by greenhouse gas concentration pathways until 2100 and showed that the entire world's ocean surface will be simultaneously impacted by varying intensities of ocean warming, acidification, oxygen depletion, or shortfalls in productivity. In contrast, only a small fraction of the world's ocean surface, mostly in polar regions, will experience increased oxygenation and productivity, while almost nowhere will there be ocean cooling or pH elevation. We compiled the global distribution of 32 marine habitats and biodiversity hotspots and found that they would all experience simultaneous exposure to changes in multiple biogeochemical variables. This superposition highlights the high risk for synergistic ecosystem responses, the suite of physiological adaptations needed to cope with future climate change, and the potential for reorganization of global biodiversity patterns. If co-occurring biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect on human welfare. Approximately 470 to 870 million of the poorest people in the world rely heavily on the ocean for food, jobs, and revenues and live in countries that will be most affected by simultaneous changes in ocean biogeochemistry. These results highlight the high risk of degradation of marine ecosystems and associated human hardship expected in a future following current trends in anthropogenic greenhouse gas emissions.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ongoing greenhouse gas emissions can modify climate processes and induce shifts in ocean temperature, pH, oxygen concentration, and productivity, which in turn could alter biological and social systems. Here, we provide a synoptic global assessment of the simultaneous changes in future ocean biogeochemical variables over marine biota and their broader implications for people. We analyzed modern Earth System Models forced by greenhouse gas concentration pathways until 2100 and showed that the entire world's ocean surface will be simultaneously impacted by varying intensities of ocean warming, acidification, oxygen depletion, or shortfalls in productivity. In contrast, only a small fraction of the world's ocean surface, mostly in polar regions, will experience increased oxygenation and productivity, while almost nowhere will there be ocean cooling or pH elevation. We compiled the global distribution of 32 marine habitats and biodiversity hotspots and found that they would all experience simultaneous exposure to changes in multiple biogeochemical variables. This superposition highlights the high risk for synergistic ecosystem responses, the suite of physiological adaptations needed to cope with future climate change, and the potential for reorganization of global biodiversity patterns. If co-occurring biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect on human welfare. Approximately 470 to 870 million of the poorest people in the world rely heavily on the ocean for food, jobs, and revenues and live in countries that will be most affected by simultaneous changes in ocean biogeochemistry. These results highlight the high risk of degradation of marine ecosystems and associated human hardship expected in a future following current trends in anthropogenic greenhouse gas emissions.
    PLoS Biology 10/2013; 11(10):e1001682. · 12.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Net primary production (PP) in the Arctic should increase over this century, due to sea ice retreat, inducing an increase in available light, but could decrease if nitrate renewal is insufficient. Here, simulations performed with 11 Earth System Models from the CMIP5 exercise, covering 1900-2100, are analyzed using Arctic PP, surface nitrate and sea ice concentrations. Whereas the mean model well simulates Arctic-integrated PP at 511 TgC/yr for 1998-2005 and projects a 58 TgC/yr increase by 2080-2099, models neither agree on what limits PP today, nor on the sign of future PP change. However, the same mechanisms operate in all models. First, both sea ice and nitrate decrease over the 21st century. Depending on the model, the strengthening nitrate stress is sufficient to overcome the effect of light increase. The inter-model spread stems from present nitrate stocks, poorly constrained by observations and characterized by an inter-model uncertainty of >50% of the mean. Second, virtually all models agree in the open ocean zones on more spatially-integrated PP and less PP per unit area. Where models disagree is the sea ice zone, where a subtle balance between light and nutrient limitations determines the change in productivity. Hence, it is argued that reducing uncertainty on present Arctic nitrate would render Arctic PP projections much more consistent. That is definitely required to understand the impact of climate change on the Arctic food webs and carbon cycle.
    Global Biogeochemical Cycles 07/2013; · 4.68 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coral reefs face multiple anthropogenic threats, from pollution and overfishing to the dual effects of greenhouse gas emissions: rising sea temperature and ocean acidification [1]. While the abundance of coral has declined in recent decades [2, 3], the implications for humanity are difficult to quantify because they depend on ecosystem function rather than the corals themselves. Most reef functions and ecosystem services are founded on the ability of reefs to maintain their three-dimensional structure through net carbonate accumulation [4]. Coral growth only constitutes part of a reef's carbonate budget; bioerosion processes are influential in determining the balance between net structural growth and disintegration [5, 6]. Here, we combine ecological models with carbonate budgets and drive the dynamics of Caribbean reefs with the latest generation of climate models. Budget reconstructions using documented ecological perturbations drive shallow (6-10 m) Caribbean forereefs toward an increasingly fragile carbonate balance. We then projected carbonate budgets toward 2080 and contrasted the benefits of local conservation and global action on climate change. Local management of fisheries (specifically, no-take marine reserves) and the watershed can delay reef loss by at least a decade under "business-as-usual" rises in greenhouse gas emissions. However, local action must be combined with a low-carbon economy to prevent degradation of reef structures and associated ecosystem services.
    Current biology: CB 05/2013; · 10.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ocean deoxygenation has been observed in all major ocean basins over the past 50 yr. Although this signal is largely consistent with oxygen changes expected from anthropogenic climate change, the contribution of external forcing to recent deoxygenation trends relative to natural internal variability is yet to be established. Here we conduct a formal optimal fingerprinting analysis to investigate if external forcing has had a detectable influence on observed dissolved oxygen concentration ([O2]) changes between ~ 1970 and ~ 1992 using simulations from two Earth System Models (MPI-ESM-LR and HadGEM2-ES). We detect a response to external forcing at a 90% confidence level and find that observed [O2] changes are inconsistent with internal variability as simulated by models. This result is robust in the global ocean for depth-averaged (1-D) zonal mean patterns of [O2] change in both models. Further analysis with the MPI-ESM-LR model shows similar positive detection results for depth-resolved (2-D) zonal mean [O2] changes globally and for the Pacific Ocean individually. Observed oxygen changes in the Atlantic Ocean are indistinguishable from natural internal variability. Simulations from both models consistently underestimate the amplitude of historical [O2] changes in response to external forcing, suggesting that model projections for future ocean deoxygenation may also be underestimated.
    Biogeosciences 01/2013; 10(3):1799-1813. · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The responses of carbon dioxide (CO2) and other climate variables to an emission pulse of CO2 into the atmosphere are often used to compute the Global Warming Potential (GWP) and Global Temperature change Potential (GTP), to characterize the response timescales of Earth System models, and to build reduced-form models. In this carbon cycle- climate model intercomparison project, which spans the full model hierarchy, we quantify responses to emission pulses of different magnitudes injected under different conditions. The CO2 response shows the known rapid decline in the first few decades followed by a millennium-scale tail. For a 100 Gt-C emission pulse added to a constant CO2 concentration of 389 ppm, 25 ± 9 % is still found in the atmosphere after Ocean Science 1000 yr; the ocean has absorbed 59 ± 12 % and the land the remainder (16 ± 14 %). The response in global mean surface air temperature is an increase by 0.20 ± 0.12 ◦ C within the first twenty years; thereafter and until year 1000, temperature decreases only slightly, whereas ocean heat content and sea level continue to rise. Our best estimate for the Absolute Global Warming Potential, given by the time-integrated response in CO2 at year 100 multiplied by its radiative ef- ficiency, is 92.5 × 10−15 yr W m−2 per kg-CO2. This value very likely (5 to 95 % confidence) lies within the range of (68 to 117) × 10−15 yr W m−2 per kg-CO2. Estimates for time- integrated response in CO2 published in the IPCC First, Second, and Fourth Assessment and our multi-model best estimate all agree within 15 % during the first 100 yr. The integrated CO2 response, normalized by the pulse size, is lower for pre-industrial conditions, compared to present day, and lower for smaller pulses than larger pulses. In contrast, the response in temperature, sea level and ocean heat content is less sensitive to these choices. Although, choices in pulse size, background concentration, and model lead to uncertainties, the most important and subjective choice to determine AGWP of CO2 and GWP is the time horizon.
    ATMOSPHERIC CHEMISTRY AND PHYSICS 01/2013; · 5.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coral growth rates are highly dependent on environmental variables such as sea surface temperature(1,2) and solar irradiance(3,4). Multi-decadal variability in coral growth rates has been documented throughout the Caribbean over the past 150-200 years(5,6), and linked to variations in Atlantic sea surface temperatures(5). Multi-decadal variability in sea surface temperatures in the North Atlantic, in turn, has been linked to volcanic and anthropogenic aerosol forcing(7). Here, we examine the drivers of changes in coral growth rates in the western Caribbean between 1880 and 2000, using previously published coral growth chronologies from two sites in the region, and a numerical model. Changes in coral growth rates over this period coincided with variations in sea surface temperature and incoming short-wave radiation. Our model simulations show that variations in the concentration of anthropogenic aerosols caused variations in sea surface temperature and incoming radiation in the second half of the twentieth century. Before this, variations in volcanic aerosols may have played a more important role. With the exception of extreme mass bleaching events, we suggest that neither climate change from greenhouse-gas emissions nor ocean acidification is necessarily the driver of multi-decadal variations in growth rates at some Caribbean locations. Rather, the cause may be regional climate change due to volcanic and anthropogenic aerosol emissions.
    Nature Geoscience 01/2013; 6(5):362-366. · 11.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ocean ecosystems are increasingly stressed by human-induced changes of their physical, chemical and biological environment. Among these changes, warming, acidification, deoxygenation and changes in primary productivity by marine phytoplankton can be considered as four of the major stressors of open ocean ecosystems. Due to rising atmospheric CO2 in the coming decades, these changes will be amplified. Here, we use the most recent simulations performed in the framework of the Coupled Model Intercomparison Project 5 to assess how these stressors may evolve over the course of the 21st century. The 10 Earth System Models used here project similar trends in ocean warming, acidification, deoxygenation and reduced primary productivity for each of the IPCC's representative concentration parthways (RCP) over the 21st century. For the "business-as-usual" scenario RCP8.5, the model-mean changes in 2090s (compared to 1990s) for sea surface temperature, sea surface pH, global O2 content and integrated primary productivity amount to +2.73 °C, -0.33 pH unit, -3.45% and -8.6%, respectively. For the high mitigation scenario RCP2.6, corresponding changes are +0.71 °C, -0.07 pH unit, -1.81% and -2.0% respectively, illustrating the effectiveness of extreme mitigation strategies. Although these stressors operate globally, they display distinct regional patterns. Large decreases in O2 and in pH are simulated in global ocean intermediate and mode waters, whereas large reductions in primary production are simulated in the tropics and in the North Atlantic. Although temperature and pH projections are robust across models, the same does not hold for projections of sub-surface O2 concentrations in the tropics and global and regional changes in net primary productivity.
    Biogeosciences 01/2013; 10(10):6225-6245. · 3.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Coral reef framework displays substantial architectural complexity, which is positively associated with high levels of biodiversity and other ecosystem services. Framework complexity is maintained by a balance between carbonate accretionary (e.g., calcifier production) and erosional forces acting at the reef surface (e.g., grazers, hurricane damage) and internally (e.g., micro- and macroborers). Ecosystem changes, both in the recent past (e.g., loss of Diadema, depleted coral cover) and future (e.g., ocean acidification, temperature change) may disrupt this balance. This can result in a negative carbonate budget, where erosion exceeds accretion and important reef structure is lost. Recent evidence, showing that reefs across the Caribbean are losing rugosity, supports this. Here we model the carbonate budget of a Caribbean reef, and assess the impacts of ecosystem change on the reef framework. We demonstrate that Caribbean reefs have been influenced by recent past events occurring on ecological timescales. We identify the factors important in driving reef budgets, and highlight how they have changed over the past fifty years, with bioerosion-associated factors now playing a more important role in determining budgetary state. We then use the latest climate forecasts to drive our model into the future, using ‘business as usual’ and ‘best case’ scenarios to explore the impact of mitigating global greenhouse gas emissions and taking local conservation action on future Caribbean reef budgets. We find that both local and global action is needed to achieve a positive carbonate budget which has important consequences for policy.
    International Coral Reef Symposium, Cairns, Australia; 07/2012
  • Source
    P. R. Halloran
    [Show abstract] [Hide abstract]
    ABSTRACT: The amplitude, phase, and form of the seasonal cycle of atmospheric CO2 concentrations varies on many time and space scales (Peters et al., 2007). Intra-annual CO2 variation is primarily driven by seasonal uptake and release of CO2 by the terrestrial biosphere (Machta et al., 1977; Buchwitz et al., 2007), with a small (Cadule et al., 2010; Heimann et al., 1998), but potentially changing (Gorgues et al., 2010) contribution from the ocean. Variability in the magnitude, spatial distribution, and seasonal drivers of terrestrial net primary productivity (NPP) will be induced by, amongst other factors, anthropogenic CO2 release (Keeling et al., 1996), land-use change (Zimov et al., 1999) and planetary orbital variability, and will lead to changes in CO2atm seasonality. Despite CO2atm seasonality being a dynamic and prominent feature of the Earth System, its potential to drive changes in the air-sea flux of CO2 has not previously (to the best of my knowledge) been explored. It is important that we investigate the impact of CO2atm seasonality change, and the potential for carbon-cycle feedbacks to operate through the modification of the CO2atm seasonal cycle, because the decision had been made to prescribe CO2atm concentrations (rather than emissions) within model simulations for the fifth IPCC climate assessment (Taylor et al., 2009). In this study I undertake ocean-model simulations within which different magnitude CO2atm seasonal cycles are prescribed. These simulations allow me to examine the effect of a change in CO2atm seasonal cycle magnitude on the air-sea CO2 flux. I then use an off-line model to isolate the drivers of the identified air-sea CO2 flux change, and propose mechanisms by which this change may come about. Three mechanisms are identified by which co-variability of the seasonal cycles in atmospheric CO2 concentration, and seasonality in sea-ice extent, wind-speed and ocean temperature, could potentially lead to changes in the air-sea flux of CO2 at mid-to-high latitudes. The sea-ice driven mechanism responds to an increase in CO2atm seasonality by pumping CO2 into the ocean, the wind-speed and solubility-driven mechanisms, by releasing CO2 from the ocean (in a relative sense). The relative importance of the mechanisms will be determined by, amongst other variables, the seasonal extent of sea-ice. To capture the described feedbacks within earth system models, CO2atm concentrations must be allowed to evolve freely, forced only by anthropogenic emissions rather than prescribed CO2atm concentrations; however, time-integrated ocean simulations imply that the cumulative net air-sea flux could be at most equivalent to a few ppm CO2atm. The findings presented here suggest that, at least under pre-industrial conditions, the prescription of CO2atm concentrations rather than emissions within simulations will have little impact on the marine anthropogenic CO2 sink.
    Biogeosciences 06/2012; 9(6):2311-2323. · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use the HadGEM2-ES Earth System model to examine the degree of reversibility of a wide range of components of the Earth System under idealized climate change scenarios where the atmospheric CO 2 concentration is gradually increased to four times the pre-industrial level and then reduced at a similar rate from several points along this trajectory. While some modelled quantities respond almost immediately to the atmospheric CO 2 concentrations, others exhibit a time lag relative to the change in CO 2 . Most quantities also exhibit a lag relative to the global-mean surface temperature change, which can be described as a hysteresis behaviour. The most surprising responses are from low-level clouds and ocean stratification in the Southern Ocean, which both exhibit hysteresis on timescales longer than expected. We see no evidence of critical thresholds in these simulations, although some of the hysteresis phenomena become more apparent above 2 × CO 2 or 3 × CO 2 . Our findings have implications for the parametrization of climate impacts in integrated assessment and simple climate models and for future climate studies of geoengineering scenarios.
    Environmental Research Letters 05/2012; 7:24013-9. · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Systematic climate shifts have been linked to multidecadal variability in observed sea surface temperatures in the North Atlantic Ocean. These links are extensive, influencing a range of climate processes such as hurricane activity and African Sahel and Amazonian droughts. The variability is distinct from historical global-mean temperature changes and is commonly attributed to natural ocean oscillations. A number of studies have provided evidence that aerosols can influence long-term changes in sea surface temperatures, but climate models have so far failed to reproduce these interactions and the role of aerosols in decadal variability remains unclear. Here we use a state-of-the-art Earth system climate model to show that aerosol emissions and periods of volcanic activity explain 76 per cent of the simulated multidecadal variance in detrended 1860-2005 North Atlantic sea surface temperatures. After 1950, simulated variability is within observational estimates; our estimates for 1910-1940 capture twice the warming of previous generation models but do not explain the entire observed trend. Other processes, such as ocean circulation, may also have contributed to variability in the early twentieth century. Mechanistically, we find that inclusion of aerosol-cloud microphysical effects, which were included in few previous multimodel ensembles, dominates the magnitude (80 per cent) and the spatial pattern of the total surface aerosol forcing in the North Atlantic. Our findings suggest that anthropogenic aerosol emissions influenced a range of societally important historical climate events such as peaks in hurricane activity and Sahel drought. Decadal-scale model predictions of regional Atlantic climate will probably be improved by incorporating aerosol-cloud microphysical interactions and estimates of future concentrations of aerosols, emissions of which are directly addressable by policy actions.
    Nature 01/2012; 484(7393):228-32. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. These achievements and related studies have substantially improved our understanding and reduced the uncertainties of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.
    Atmospheric Chemistry and Physics 12/2011; 11:13061-13143. · 4.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Coral reef framework displays substantial architectural complexity, which is positively associated with high levels of biodiversity and other ecosystem services, such as sand production and coastal protection. Framework complexity is maintained by a balance between carbonate accretionary (e.g., calcifier production) and erosional forces acting at the reef surface (e.g., grazers, hurricane damage) and internally (e.g., micro- and macroborers). Ecosystem changes, both in the recent past (e.g., loss of Diadema, depleted coral cover) and future (e.g., ocean acidification, temperature change) may disrupt this balance. This can result in a negative carbonate budget, where erosion exceeds accretion and important reef structure is lost – something that is currently being seen across the Caribbean, with reefs becoming flatter. Due to their cryptic nature, bioeroders have been traditionally under-represented in the literature in comparison to primary CaCO3 production, despite their importance in contributing to biodiversity, sediment production, cavity production, nutrient cycling, contribution to the food web and modification of framework growth. Here we model the carbonate budget of a Caribbean reef, taking into account both bioerosion and accretion, to assess the impacts of ecosystem change on the reef framework. We demonstrate that Caribbean reefs have been influenced by recent past events occurring on ecological timescales. We identify the factors important in driving reef budgets, and highlight how they have changed over the past fifty years, with bioerosion-associated factors now playing a more important role in determining budgetary state. We then use the latest climate forecasts to drive our model into the future, using ‘business as usual’ and ‘best case’ scenarios to explore the impact of mitigating global greenhouse gas emissions and taking local conservation action on future Caribbean reef budgets. We find that both local and global action is needed to achieve a positive carbonate budget which has important consequences for policy.
    Reef Conservation UK Conference, Zoological Society of London, UK; 12/2011
  • P. Halloran, B. Booth, N. Dunstone
    [Show abstract] [Hide abstract]
    ABSTRACT: Multi-Model Intercomparison Project (CMIP3) interactive aerosol processes (via which aersols influence cloud brightness and lifetime) were not yet run interactively at most modelling centres. CMIP5 is likely to represent a major step forward, with representation of these processes for the core experiments in a much larger fraction of contributing models. Aerosol representations of these kind may be key to understanding and predicting regional climate changes. Here we revisit historical changes in Atlantic Temperatures (which are strongly linked with rainfall and other climate impacts, not least with changes in North Atlantic Hurricanes; Sahel Rainfall drought; Amazon and Indian Monsoon rainfall). There has been extensive discussion in the literature about whether the observed changes are driven by natural variability or represent forced temperature changes, with the current consensus from CMIP3 generation of models pointing towards natural origins. Here we present the results from two generations of Hadley Centre models with increasing earth system complexity, which suggest that a larger fraction of the observed changes may be consistent with forced changes to the climate system linked to both major volcanic events and historical aerosol emissions.
    AGU Fall Meeting Abstracts. 12/2011;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We describe here the development and evaluation of an Earth system model suitable for centennial-scale climate prediction. The principal new components added to the physical climate model are the terrestrial and ocean ecosystems and gas-phase tropospheric chemistry, along with their coupled interactions. The individual Earth system components are described briefly and the relevant interactions between the components are explained. Because the multiple interactions could lead to unstable feedbacks, we go through a careful process of model spin up to ensure that all components are stable and the interactions balanced. This spun-up configuration is evaluated against observed data for the Earth system components and is generally found to perform very satisfactorily. The reason for the evaluation phase is that the model is to be used for the core climate simulations carried out by the Met Office Hadley Centre for the Coupled Model Intercomparison Project (CMIP5), so it is essential that addition of the extra complexity does not detract substantially from its climate performance. Localised changes in some specific meteorological variables can be identified, but the impacts on the overall simulation of present day climate are slight. This model is proving valuable both for climate predictions, and for investigating the strengths of biogeochemical feedbacks.
    Geoscientific Model Development 11/2011; 4:1051-1075. · 5.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the HadGEM2 family of climate configurations of the Met Office Unified Model, MetUM. The concept of a model "family" comprises a range of specific model configurations incorporating different levels of complexity but with a common physical framework. The HadGEM2 family of configurations includes atmosphere and ocean components, with and without a vertical extension to include a well-resolved stratosphere, and an Earth-System (ES) component which includes dynamic vegetation, ocean biology and atmospheric chemistry. The HadGEM2 physical model includes improvements designed to address specific systematic errors encountered in the previous climate configuration, HadGEM1, namely Northern Hemisphere continental temperature biases and tropical sea surface temperature biases and poor variability. Targeting these biases was crucial in order that the ES configuration could represent important biogeochemical climate feedbacks. Detailed descriptions and evaluations of particular HadGEM2 family members are included in a number of other publications, and the discussion here is limited to a summary of the overall performance using a set of model metrics which compare the way in which the various configurations simulate present-day climate and its variability.
    Geoscientific Model Development 01/2011; 4:723-757. · 5.03 Impact Factor

Publication Stats

615 Citations
233.01 Total Impact Points

Institutions

  • 2013–2014
    • University of Exeter
      • College of Life and Environmental Sciences
      Exeter, England, United Kingdom
    • Met Office
      Exeter, England, United Kingdom
  • 2005–2009
    • University of Oxford
      • Department of Earth Sciences
      Oxford, England, United Kingdom